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Abstract 

Let C be a closed surface, G a compact Lie group, not necessarily connected, with Lie algebra 
g, < : P + 1 a principal G-bundle, let N(t) denote the moduli space of central Yang-Mills 
connections on 5, with reference to suitably chosen additional data, and let Rep<(T,G) be the 
space of representations of the universal central extension r of the fundamental group of Z in G 
that corresponds to 5. We construct smooth structures on N(t) and Rep<(T, G), that is, algebras 
of continuous functions which restrict to smooth functions on the strata of certain associated 
stratifications; by means of a detailed investigation of the derivative of the holonomy we show 
thereafter that, with reference to these smooth structures, the assignment to a smooth connection A 

of its holonomies with reference to suitable closed paths yields a diffeomorphism from N(t) onto 
Rep,(T,G); moreover, we show that the derivative of the latter at the non-singular points of 
N(t) amounts to a certain twisted integration mapping relating a suitable de Rham theory with 
group cohomology with appropriate coefficients. Finally, we examine the infinitesimal geometry 
of these moduli spaces by means of the smooth structures and, for illustration, we show that, 
on the moduli space of flat SU(2)-connections for a surface of genus two which, as a space, 
is just complex projective 3-space, our smooth structure looks rather different from the standard 
structure. @ 1998 Elsevier Science B.V. 

AMS cluss$cation: 14D20; 32G13; 32560; 58C27; 58D27; 58E15; 8lTl3 

0. Introduction 

Let X be a decomposed topological space, e ach piece of the decomposition being 

a smooth manifold. A smooth structure on X is an algebra Cm(X) of continuous 
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functions on X which, on each piece, restrict to smooth functions. We shall refer to 
__...1. ̂  ^_^^^ ^^ ^ ,...*_._.rr. ̂_^^^ T.. CL,. -_-_^^,.-_C _,.__.. ._I^ .-.,,-l,..-. ,,.&“Z.. -,,Z..X nxn,.lln bllC;II a apace as a JI”1”“&IL space. 111 LllC t.“E;Sc;“L pClpcX, WC; CX‘LIUW ~elLal,l lll”UU‘l JP,aC&X9 

with a smooth structure and thereafter analyze their singular structure and infinitesimal 

geometry by means of it. It belongs to a series of papers about a program revealing the 

structure of these moduli spaces by means of the symplectic or more generally Poisson 

geometry of certain related classical constrained systems but its results are of interest in 

their own right. In [12] we construct the searched for Poisson structures on the moduli 

spaces, thereby obtaining structures of a stratijed symplectic space in the sense of 

[30]; such a structure encapsulates the mutual positions of symplectic structures on the 

strata. It is known that some of these moduli spaces carry the additional structure of 

a (complex) projective variety which, however, does not shed too much light on the 

singular behavior of the symplectic or Poisson structures in general; in fact, it may 

happen that the symplectic structure is singular whereas the complex analytic one is 

not. _An cxamnle will be mentioned shortly. On the other hand, the singular behavior of 

the symplectic or more generally Poisson structures can entirely be understood in the 

framework of the real algebraic geometry of appropriate smooth structures on these 

moduli spaces, to which the present paper is devoted. We shall relate the smooth 

structures with appropriate complex analytic structures elsewhere by means of a suitable 

notion of polarization for Poisson structures; this will generalize the classical description 

of a Kahler structure in terms of a holomorphic polarization and in particular will 

provide the necessary means to talk about mutual positions of KIhler structures on the 

strata. 

We explain at first briefly the moduli spaces. Let C be a closed surface, G a compact 
1 :P -nlln nnt ~PPPOO&~V cnnn~rtwl w;th 1 ;P aloehra n mll F. P + z 2 nrinrinnl YLU 6’“Ly, II”& ,IYYYOYU”‘J IVIIIIWYIIU) .1&L.. AL... U’&V”‘U 3, u.... , . z Y---‘--Y-’ 
G-bundle, having a connected total space P. Further, pick a Riemannian metric on C 

and an orthogonal structure on g, that is, an adjoint action invariant scalar product. 

These data then determine a Yang-Mills theory studied for connected G extensively by 

Atiyah-Bott in [4] to which we refer for background and notation. We only mention 

that a connection is said to be Yang-Mills provided it satisfies the corresponding Yang- 

Mills equations and central when its curvature is a 2-form on Z with values in the Lie 

algebra of the center of G. The mod& space N(r) of central Yang-Mills connections 

is then that of gauge equivalence classes of central Yang-Mills connections; it is a 

compact space, including as special cases certain moduli spaces of flat connections and 
Al_.. XT..___:-l_..- 0^^~.^1-: -_.J..,: ^_^^_^ r?n _c,,,:,~,l_,_ 1.,.,,.,,....~:, _.^“&,._ k..,A,,, L‘lt: IYalas,,nnal,-~~snacu~~,-lr,“uul, bP&CS LL”, “I seII,IsLa”Ie II”I”III”IpIIII, “CXZL”, vLu,LuejJ. 

For example, as a space, the moduli space of flat SU(2)-connections for a surface of 

genus 2 is just complex projective 3-space [25]; as a complex analytic space, it is non- 

singular but the symplectic or more general stratified symplectic structure degenerates 

on a Kummer surface; see [ 161. For a general bundle 5 and structure group G, we 

shall assume throughout that the space N(t) is non-empty, that is, that Yang-Mills 

connections exist. For example, this will be the case for a connected structure group, 

cf. [4]. 

In [IO] we have shown that the assignment to a connection of its holonomies, with 

reference to suitably chosen closed paths, induces a homeomorphism, referred to as 
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Wilson loop mapping for a reason given in Section 2 below, from N(5) onto a certain 

representation space Rep&T, G) for the universal central extension r of the fundamen- 

tal group rt of C. While the space N(l) depends on the choice of Riemannian metric 

on C the space Rep&T, G) does not. One of our aims is to show that, with reference to 

appropriate additional structure, the Wilson loop mapping is in fact a diffeomorphism. 

We now give a brief overview of the paper. Section 1 is preliminary in character. 

In Section 2 we determine the derivative of the hoionomy, viewed as a map from the 

space of connections to the structure group, once the appropriate additional requisite 

data have been chosen. In Section 3 we introduce our algebras of smooth functions 

and spell out the first chief result of the paper, Theorem 3.8; it will say that, the 

spaces N(5) and Rep&T,G) being decomposed into connected components of orbit 

types in the appropriate sense, the Wilson loop mapping is fact a diffeomorphism. In 

Section 4 we give a description of the twisted integration mapping tailored to our 

purposes. In Section 5 we rework and extend the classical relationship between the 

infinitesimal structure of representation spaces and group cohomology which goes back 

at least to Weil [31, 321, cf. [27]. In Section 6 we reduce the smooth structures 

of N(5) and Rep((T, G) near any of its points to that of local models of a kind 

introduced in an earlier paper [ 111, endowed with suitable smooth structures. This will 

be our second chief result. Our third chief result, Theorem 6.15 below, will be the 

existence of suitable partitions of unity; this will then enable us to complete the proof 

of Theorem 3.8 mentioned above. In Section 7 we examine the infinitesimal structure 

of our spaces of interest. In particular, we shall establish the fact that the space N(t) 

is locally semialgebraic. Finally, in Section 8 we examine the moduli space of flat 

SU(2)-connections for a surface of genus 2 which, cf. what was said above, as a 

space is just complex projective 3-space. We shall see that, as a smooth space with 

the appropriate smooth structure, it looks rather different; for example, at 16 isolated 

points, the Zariski tangent space has (real) dimension 10. 

Abstracting the structure of the spaces N(t) and Rep&C, G) isolated in the present 

paper we are led to spaces with an algebra of functions which, locally, look like the 

reduced space of a momentum mapping for a representation of a compact Lie group 

which varies over the space, with the obvious smooth structure on the reduced space. 

This class of spaces may well be worth an independent investigation. 

1. Preliminaries 

Let M be a finite-dimensional smooth connected manifold, not necessarily compact, 

G a (real) Lie group, not necessarily compact, g its (real) Lie algebra, and l: P + M 

a principal G-bundle over M, with G acting on the right of P. We denote the action 

of n E G by RX : p H px, where p E P. The affine space d(t) of smooth connections 

on t inherits an obvious action of the group S(c) of gauge transformations and so 

does the graded vector space Q*(M,ad(5)). We pick a base point Q EM and a pre- 

image 0 E P; then assignment to a gauge transformation y on t of xy E G defined by 
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n 

y(Q) = Q+ furnishes a surjective homomorphism 

whose kernel is the group @(5) of (at Q) based gauge transformations. The adjoint 
bundle ad(l) is the Lie algebra bundle over M associated with 5 and the adjoint 

action of G on g. With the obvious bracket, its space of sections s2°(iV,ad(l)) is the 

Lie algebra of S(t) in a natural fashion. The tangent bundle of a smooth manifold X 

will be written zx : TX + X. 

We shall not distinguish in notation between the naive objects and their Sobolev 

completions [4, 6, 23, 241. 

2. The derivative of the holonomy 

Let I = [0, b] be an interval and u : I + M a smooth path in M having starting 

point Q. For a connection A, we denote by uA,$ : I + P the horizontal lift of U, having 

starting point Q. For t E I, let uA d t : [0, t] -+ P be the restriction of uA 0 to [0, t]. 

Among the various descriptions’ of the space C$(M, ad(t)) of j-forms with values 

in the adjoint bundle ad{ g) we shall take here that in terms of G-invariant horizontal 

g-valued forms on P. The following will be crucial. 

Theorem 2.1. With reference to a suitable Sobolev topology on d(t), the assignment 
to (A, t) E d(r) x I of the horizontal Zift uA,h (t) f urnishes a continuous map U from 

d(T) x I to P whose restriction to any smooth ftnite-dimensional submanifold of 
J&‘(<) x I is smooth. Giuen a connection A on 5 and a l-form 6 E a1 (M, ad( 5)) = 

TAXI(~), an explicit formula for the partial derivative (XJ/M)(A, t) = dU(A, t)(ti, 0) 
is given by 

(2.2) 

Remark 2.3. Some comment about the interpretation of the formula (2.2) might be in 

order: The l-form 19 being viewed as a G-invariant g-valued one on P which vanishes 

on the vertical vectors, the integral s% p ,19 is well defined as an element of the Lie 

algebra g. Moreover, by construction, uA p ’ : - (t) E P, and the expression 

refers to the element which is obtained when the canonical injection from P x g into 

the total space TP is applied to the pair (uA,a (t), JuA p I S). 
. , 

Remark 2.4. The existence of the derivative of U, restricted to an arbitrary smooth 

finite-dimensional submanifold, and that of corresponding derivatives of arbitrarily high 
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order, follows from standard facts about analytical dependence of the solution of a 

differential equation on suitable parameters. 

Proof of Theorem 2.1. In the good range k > dimM/2, convergence in the Sobolev 

topology Hk implies uniform convergence, cf. [7, Section 61. This implies readily that 

U is continuous. 

The smooth tangent space TA&‘(~) is naturally identified with the vector space of 

l-forms O’(A4, ad(<)) with values in the adjoint bundle, and, for a fixed value of t ~1, 

we look for the derivative TA U, : TA&‘(<) 4 Tu,P of the map U, : d( 5) + P which 

is given by the assignment to a connection A of the value U,(A) = uA d(t) E P. Thus, 

given 6 f @(A$ ad([)), all we need is an expression for the partial derivative 

To obtain such an expression, given s E R and 8 E Q1 (A4, ad(l)), we consider the 

horizontal lift uA+s19 d : I + P of U. It is clear that the assignment to (s,t) E I xl of 

u~+~~,o (t) yields a’ smooth map u^ : I x I --f P, and what we are looking for is an 

expression for the partial derivative of this map at s = 0, whatever t ~1. To simplify 

notation, write v = uA,& . . Z + P for the horizontal lift of U. It is obvious that there is 

a unique map a : I x I -+ G such that, for every (s, t) E I x I, 

qs, t) = v(t)a(s, t). 

When we fix s and differentiate this identity with respect to the parameter t we obtain 

the identity 

C: = $2, + v,a;; 

here we have written at = a(s, t) E G, 6, = uI(s, t) E P, vt = v(t) E P; furthermore, with a 

notation used e.g. on p. 69 of [18], Gi is the tangent vector to the curve (s, t) H ti(s, t) 

(s fixed) at the point U(S, t), and vi and ai refer to the corresponding tangent vectors of 

the other curves coming into play. Let o : TP + g be the connection form of A; then 

o - ~29 is the connection form of A + ~19. Exploitation of the fact that z’ii is horizontal 

for the connection A + s6 yields 

0 = (0 -s@($) 

= C&4;> - sr9(r$) 

= C&a, + vtu;> - stQ;u, + vtu;> 

= CO(v;ut) + 0&z;) - st9(v;ut) - s?9<vtu;> 

= 4(%,)*4) + NV:> - 4(%, )*Q 

since vtuj is vertical and since 6 is zero on vertical vectors; we remind the reader that 

R,, : P + P refers to the action of G on P. Moreover, since the curve vI is horizontal 

with respect to A, G-invariance of o implies that w((%,)*v~) equals ad,,-, w(v:) which 
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is zero; likewise, G-invariance of 8 implies 19((&,)*z$) = ad,;lti(u:). Further, by con- 

struction, o(z# equals a, -‘a: E g = T,G. Consequently, the fact that i2: is horizontal 

for the connection A + sti entails that at satisfies the differential equation 

in the Lie algebra g of G or, equivalently, the differential equation 

0 = f&z,’ -squ;)Eg. 

When we differentiate this equation with respect to s we obtain 

0 = -&al-‘) - lJ(u;)Eg, 

that is, 

Finally, we observe that by construction the map a is subject to the conditions 

~(0, t) = e = a(s, 0). In particular, for s = 0, do we have ui = 0, and hence, for s = 0, 

the differential equation (*) simplifies to 

(**) 0 = $2: - l9(t&g. 

However, since a is defined on the product of two intervals, we may interchange partial 

derivatives and obtain, for s = 0, the differential equation 

0 = ;z - 6(u;)Eg. 

From this we conclude that 

;(o,t) = St fl(u:)dz = / l9E9. LJ 
0 % 8. I 

By a smooth map h on d(t) with values in a smooth finite-dimensional manifold 

we mean henceforth a continuous map h whose restriction to an arbitrary smooth finite- 

dimensional submanifold of&‘(l) is smooth in the ordinary sense. We can then still talk 

about the derivative of h: for a point A of d(c), by the dzfirential or derivative dh(A), 

evaluated at a l-form 79~ @(M, ad(t)), we mean the corresponding partial derivative. 

For a smooth closed path w : [0, b] + M, with starting point Q EM, the holonomy 

Hol, &I) E G of A along w with reference to 0 is defined by 

wA,$b) = 0 Ho&,, &(x4) E P. 

For y E G we denote by L, the operation of left translation from g to T,G. 
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Corollary 2.5. When u is closed the holonomy along u furnishes a smooth map Hol,~ 

from &‘( 5) to G. Moreover, at a connection A, with y = Hoi, d(A) E G, the d#@rential 
dHol,$A) : TA&‘(~) --+ T,G assigns to a smooth l-form tints._& = @(it&ad(~)) 

the value L, S, p 19 E T,G. Finally, this map is invariant in the sense that, given a gauge 

transformation’ y, whatever smooth connection A, Hoi, d(yA) = ~~Hol,, d(A)x;‘. (See 

Section 1 for the notation xy.) 

Proof. Let 6 E !S’(M, ad(t)) = TA&‘(~) and Y = JUA d 19 E g. By Theorem 2.1, an 

explicit formula for the partial derivative (dUb/&9)(A) = dub(A)(G) of the map ub 

from d(t) to P which assigns uA, d(b) E P to AE ,oZ(<) is given by 

$64) = -$(u,, @)exp tyh=, E T,~ a(b)P. 

The derivative T,G --+ T&P at a E G of the smooth map from G to P which assigns 

to a E G the point oa E P may be described by the assignment to L,Z of oL,Z, for 

Z E g. Hence, 

$(z+$b)exptY)I,=o = -$ i)Hol,,,$A)exptY)It=a = dL,/ 19. 0 
ua. a 

Now we pick smooth closed curves WI,. . . , w, in A4 starting at Q and represent- 

ing a set of generators xl,. . . , x, of the fundamental group rr = rrt(M,Q); we write 

w = (wl,. . . , w,) and denote by F the free group on xl,. . .,x,. The assignment to a 

connection A of (Hoi,,, d(A), . . . , Hol,, $(A)) E G” yields a map 

p = Ho1 w, Q : ~40 --+ G” (2.6) 

which, in view of Theorem 2.1, is smooth in the sense that its restriction to an arbitrary 

smooth finite-dimensional submanifold of d(t) is smooth. We refer to p as Wilson 
loop mapping since, for G compact, its composite with a smooth G-invariant function 

on Hom(F, G) yields a smooth S(r)-’ mvariant function on &‘([) generalizing what 

is called a (classical) Wilson loop observable in the physics literature. Here is an 

immediate consequence of Corollary 2.5. 

Theorem 2.7. At a connection A, with 

AA) = (Hol,,,~(A),...,Hol,,$(A)) = (yl,...,~n)~G", 

the dzfirential dp(A) : TA&‘(l;) + Tp(~)Gn = Ty, G x . . . x T,,“G of (2.6) is given by 
the assignment to 6 E Q’(M, ad([)) = Ted of 

I w,,&)= (,,,S,,B,....L,~“B)tS,Gx...xT~“G, 

where, with an abuse of notation, for 1 < j < n, wj denotes the horizontal ltft of wj 
with reference to A and &. 
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3. The first main result 

In this section we introduce our algebras of smooth functions and spell out the first 

main result of the paper. We return to the circumstances of the Introduction. Thus, 

C denotes a closed surface, G a Lie group which we now assume compact but not 

necessarily connected, with Lie algebra g, l : P -+ C a principal G-bundle, having 

a connected total space P, and Q E C a chosen base point. Consider the standard 

presentation 

9 = bl,Yl ,...,.v,yr;r), r = blrYl1. “. . bt,Y/l, (3.1) 

of the fundamental group rc = nl (C, Q), the number 8 being the genus of C; we denote 

by F the free group on xi, yl, . ,x/, yr and by N the normal closure of r in F. The 

quotient group r = F/[F,N] yields the universal central extension 

O+Z-+T+rr+l (3.2) 

of rr; cf. [4, Section 6; and 10, Section 21. The topology of the bundle 5 deter- 

mines an element X; of the Lie algebra z of the centre Z of G which is a topo- 

logical characteristic class of 4; see [4] for the case of a connected structure group 

G and Section 1 of our paper [lo] for the general case. The evaluation map which 

assigns (#J(x~ ), ~(YI ), . . . , 4(p)), &yr)) E G2’ to 4 E Hom(F, G) identifies Hom(F, G) 

with G2(. Let Hg(T, G) be the subspace of Hom(F, G) consisting of homomorphisms 

x E Hom(F, G) such that 

[x(~l)?x(Yl)l~ ... . [X(XC ), X(Y~ )I = expE) 6 Z. (3.3) 

This space is manifestly compact and hence has only finitely many connected com- 

ponents; furthermore, it is a finite union of real algebraic sets, which, in turn, also 

implies that it has only finitely many connected components since this is true of any 

real algebraic set, cf. [35]. 

The values of the restriction of the Wilson loop mapping (2.6) to the subspace 

JV”( 5) of central Yang-Mills connections lie in Hy(T, G); we denote by Homg(T, G) 

its image in Hg(T, G); it is a space of homomorphisms from r to G. A more intrinsic 

description of the resulting surjection from JV(<) onto Hom;(T, G) may be found in 

(3.8) of our paper [lo]. The connected components of Homg(T, G) are parametrized by 

the points of the corresponding rcs-orbit in Hom(n,xs), where rcs refers to the group 

of connected components of G; in particular, when G is connected, Homg(T, G) is 

connected. Let It denote the ideal in the algebra C”(Hom(F, G)) of smooth functions 

on Hom(F, G) that vanish on the subspace Homy(T, G) of Hom(F, G), and define an 

algebra C03(Homy(T,G)) of continuous functions on Hom;(T,G) by 

C”(Homg(T, G)) = P(Hom(F, G))/Zt. (3.4) 

This algebra is often called that of Whitney smooth functions on Homg(T, G), cf. [34]. 

We note that here and henceforth spaces may arise which are not necessarily connected. 
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When we talk about an algebra of continuous functions on such a space we always 

mean an algebra of continuous functions on a connected component. We do not indicate 

this explicitly, to avoid an orgy of notation. 

Let Rep&T, G) = HomC(T, G)/G. We define an algebra Cm(Rept(T, G)) of contin- 

uous functions on Rep&T, G) by 

C”(Repy(r, G)) = (C?Hom(K G)))G/IF, (3.5) 

that is, we take that of smooth G-invariant functions (P’(Hom(F, G)))G on Hom(F, G) 

modulo its ideal 1\? of functions that vanish on Homg(T, G). By construction this is 

an algebra of functions on Rep&T, G) in an obvious fashion. Since G is compact, the 

canonical map from Cm(Repg(T,G)) to (Cm(Homg(T,G)))G is a bijection whence 

Ca(Repg(r9 G)) may as well be described as the algebra of G-invariant Whitney 

smooth functions on Homy(T,G). Since we shall not need this fact we refrain from 

giving the details here. 

In the same vein, denote by C”(&(t)) the algebra of smooth functions on &4(t) 

in the sense explained in Section 2 above; we then define the algebra Coo(Jlr( 5)) on 

_Y(<) as the quotient algebra P’(&(5))/Jt, where Jr refers to the ideal of functions 

in C”(&‘( 5)) that vanish on the subspace N(5) of d(t), and we define an algebra 

P’(N(t)) of continuous functions on the moduli space N(5) = JV(~“)/Y(~) of central 

Yang-Mills connections by 

C” (N( [)) = (C”(d( t)))“(t) ,z;q (3.6) 

that is, we take the algebra of smooth 9(t)-invariant functions (P’(&‘( r)))“(t) on 

d(r) modulo its ideal IF” of functions that vanish on N(t). By construction, this 

is an algebra of functions on N(t), in an obvious fashion. 

The decomposition of N(5) into connected components of orbit types of classes 

of central Yang-Mills connections endows N(l) with a structure of a decomposed 
space, in fact, see [ 11, (1.2)], with that of a stratzjied space. The pieces are smooth 

manifolds, parametrized by conjugacy classes (K) of subgroups K of G; the piece 

N(K)(~) corresponding to (K) consists of classes [A] of central Yang-Mills connections 

A having stabilizer Z, C 9(l) whose image in G under (1.1) is conjugate to K. 
We now pick smooth closed paths ~1, ~1,. . . , UC, up in C representing the generators 

x1, yt, . . , ,XC, ye, so that the standard cell decomposition of C with a single 2-cell e 

corresponding to r results, and, furthermore, a base point 0 E P so that 5( 0) = Q E C. 

Then the Wilson loop mapping p from &‘(5) to Hom(F, G) with reference to these 

data, cf. (2.6), induces a homeomorphism 

pb : N(t) --f Rep&r, G); (3.7) 

it coincides with the map given in (3.8.2) of our paper [lo]. By an abuse of language, 

we refer to Pb as Wilson loop mapping as well. It is independent of the choices made 

to define p. 
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The decomposition of Rep&T, G) into connected components of orbit types of rep- 

resentations has as well pieces parametrized by conjugacy classes (K) of subgroups 

of G; the piece RK)([) corresponding to (K) consists of classes [4] of homomor- 

phisms 4 from r to G having stabilizer Zb C G conjugate to K. The Wilson loop 

mapping Pb is manifestly compatible with the decompositions since (1.1) identifies the 

stabilizer Z, of a connection A with the stabilizer Zp(~) of p(A) E Hom(F,G), cf. e.g. 

[14, (2.4)]. Consequently, the Wilson loop mapping, restricted to a piece N(K)(~) of 

N(t), is a homeomorphism onto the corresponding piece R(K)(~) of the decomposi- 

tion of Rep&T, G). In particular, each connected component of a piece R(K)(~) of the 

decomposition of Rep&T, G) into G-orbit types inherits a structure of a smooth mani- 

fold from the corresponding stratum of N(5) in such a way that this decomposition of 

Rep&T, G) is as well a stratification. 

Given smooth spaces (X, P’(X)) and (Y, CO”(Y)), a map 4 : X -+ Y is said to 

be smooth provided for every f E Coo(Y) the composite f o 4 is a smooth function 

on X, that is, lies in C”(X). The usual notion of diffeomorphism carries over as well: 

A smooth homeomorphism is a difSeomorphism provided its inverse map is also smooth. 

Here is the first main result of the paper. 

Theorem 3.8. With reference to the decompositions into connected components of 
orbit types, the algebras P’(N([)) and Cm(Rep&T, G)) yield smooth structures on 
N(l) and Rep&T, G), respectively, and the Wilson loop mapping pb from N(l) to 
Rep&r, G) is a diffeomorphism of smooth spaces. 

Remarks about the proof. The restriction of a function in Cm(N(5)) to a piece is a 

smooth function in the ordinary sense, and the same is true of C”(Rep&r,G)). This 

is a consequence of the fact that the restriction of a smooth function to a smooth 

submanifold is a smooth function on the submanifold. A more formal proof will 

be given in Section 6 below. Hence, the algebras P’(N(<)) and P(Rep&T,G)) 

furnish smooth structures as asserted. Smoothness of the map Pb follows at once 

from the facts that the Wilson loop mapping p from &‘(t) to Hom(F, G) is smooth 

and Y(r)-invariant, cf. Theorem 2.7, where S(5) acts on Hom(F, G) through the 

projection (1.1). Moreover p* is manifestly injective since Pb is a homeomorphism 

and hence identifies the algebras of continuous functions on these spaces. The sur- 

jectivity of p* will be established in Section 6 below by a partition of unity 

argument. 0 

Notice that a priori the smooth structure COO(Rep&T,G)) depends on the choice 

of presentation of n but not on the chosen Riemannian metric on z while the space 

N(5) and hence a fortiori its smooth structure COO(N(t)) depend on the chosen Rie- 

mannian metric on J5 but not on the choice of presentation of x. Theorem 3.8 implies 

that the smooth structure on Rep&T, G) does not depend on the choice of presenta- 

tion. Furthermore, a diffeomorphism 4 of C preserving r will induce a commutative 
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diagram 

N(r) A Rep&r, G) 

I I 

of diffeomorphisms of smooth spaces, where fi(r) denotes the moduli space of central 

Yang-Mills connections for the image under 4 of the chosen Riemannian metric on Z. 

We hope to return to this issue at another occasion. 

4. The twisted integration mapping in de Rham theory 

In the present section we work out a precise description of the twisted integration 

mapping tailored to our purposes. 

Let G be a Lie group, not necessarily compact, and consider a principal G-bundle 

5 : P + M over an arbitrary smooth connected finite-dimensional manifold it4 having 

connected total space P. As before we pick a base point Q of M and a pre-image Q E P 
of Q. Given a flat connection A on 5, the holonomy representation $J = p(A) of 7~ = 

rri (M, Q) in G induces a structure of a rc-module on g through the adjoint action, and it 

is folk lore that the cohomology H,*(M, ad( 5)) is isomorphic to the cohomology of M 

with the appropriate local coefficients, cf. e.g. [27, VII.7.3, p. 1071. We need a more 

precise description of a somewhat more general result, to be spelled out below. 

Consider the universal covering k + M of M; we suppose that things have been 

set up in such a way that n acts on the right of I@, and we pick a pre-image Q E ii? 

of Q. 

Proposition 4.1. Every smooth Jlat connection A on 5 determines a unique smooth 
map CJ = 5 p^ E from k to P which, with respect to the corresponding holonomy repre- 
sentation p(h) of z in G, furnishes a morphism of (right) principal bundles over M. 

Proof. This is established by an argument of the kind for the Reduction theorem in 

[ 18, 11.7.11; for later reference we sketch the construction of cr: Given T E M, let W be 

a smooth path in M, necessarily horizontal, joining Q and T, let w be the path in M 
obtained by projecting W into M, and let J? be the unique lift of w that is horizontal 

for A and has starting point Q; then the value a(T) is defined as the end point of 6. 

Since A is flat, the value a(T) does not depend on the choice of W. 0 

Let [ : E --+ M be a smooth vector bundle associated to t and the finite-dimensional 

real representation V of G. Then sZ*(M, 5) amounts to the G-invariant horizontal forms 

in L?*(P, V) and the operator dA of covariant derivative of a flat connection A is a 

differential on sZ*(M,{). The following is immediate. 
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Corollary 4.2. For every JEat connection A, the map from Q*(P, V) to !2*(@, V) 

induced by 5 d 2 cj Proposition 4.1, passes to an isomorphism (T* ̂ - of chain 
. , A3Q.Q 

complexes from (sZ*(M, [), dA ) onto the subcomplex (L?*(ii?, V), d)” of z-invariant 
V-valued forms on M, the necessary rc-module structure on V coming from the holon- 
omy 71 -+ G of A combined with the G-action on V. 

Given a homomorphism 4 from n to G and a representation V of G, we write 

(C*(M, I$,),d) for the subcomplex of n-invariant V-valued cellular cochains on k 

and we denote by H*(M, I$,) the resulting n-equivariant cohomology of i@ with val- 

ues in V. It is naturally isomorphic to the cohomology of M with local coejicients 

determined by 4 and the representation of G on V. The usual integration mapping 

(SZ*(fi, V),d) + (C*(fi, V),d) from the de Rham complex to that of usual cellular 

cochains is compatible with the n-actions. Taking invariants and combining it with 

g* A e^ a’ for a given flat connection A, we obtain the chain mapping 
1 1 

(fi*(M,i),dA) + (Q*(k V),d)” + CC*@& v,(A)>,d). (4.3) 

Henceforth, we refer to it as the twisted integration mapping in de Rham theory; it 

induces an isomorphism from H,*(M, [) onto H*(M, VP(~)) a special case of which is 

the folk lore isomorphism mentioned earlier. 

Under our circumstances, twisted integration furnishes such an isomorphism even 

for a central connection which is not necessarily flat, in the following way: Recall 

[lo] that a smooth connection A on l is said to be central provided its curvature & 

is a 2-form on M with values in the Lie algebra z of the centre 2 of G. To apply 

what is said above to a central connection, write Z, for the connected component of 

the identity of Z, let G” = G/Z,, P” = P/Z,, and consider the induced principal G*- 

bundle 5’ : P” -+ M; since the adjoint representation of G on g factors through a 

representation of G” the bundle 5’ is still a principal one for ad(t). Consequently, 

a central connection A on 5 induces a flat connection A” on 5”; the operator dA of 

covariant derivative is then a differential on Q*(M,ad(t)), and we can apply what 

is said above to the vector bundle [ = ad(l) and corresponding principal bundle 5’. 

Maintaining the notation established in Section 2, we suppose that the smooth closed 

curves WI,. . . , w, are the l-cells of a cell decomposition of M with the single zero 

cell Q, and we thus in particular identify the fundamental group TC~(M’, Q) of the 

l-skeleton M’ of M with the free group F. Let, then, A be a central connection on <, 

and let 4=p(A) : F + G. With reference to the image of 0 in P”, the homomorphism 

4 manifestly passes to the standard holonomy homomorphism from rr to G’ for the 

resulting flat connection A” on 5’. Abusing notation somewhat, we write g+ for the 

Lie algebra g together with the n-module structure induced by 4 and hence by A; the 

resulting twisted integration mapping, with target the corresponding cellular cochains, 

then looks like 

(-Q*W,a44)),4) + (C,*,dMg&d) (4.4) 
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and induces, in particular, an isomorphism IntA from H,*(M, ad(t)) onto H*(M, g4). 

When A4 is aspherical, the complex of cellular chains CCe”(M) of the universal cover li? 

with its right rc-module structure is a free resolution of the ground ring in the category 

of right z-modules; when M is not aspherical, a free resolution P is obtained by adding 

to C”“(G) more generators in degrees 2 2. Consequently, whatever right n-module U, 

the canonical map from H*(rc, U) to H*(M, U) is an isomorphism in degree 1 and we 

shall take it to be the identity, the first cohomology of rt being computed from P. Thus 

the isomorphism induced by the twisted integration mapping furnishes, in degree 1, 

an isomorphism IntA from Hj(M, ad(<)) onto H’(n, g$) while, for aspherical M, in 

arbitrary degree, it yields an isomorphism Int, from Hz(M,ad(r)) onto H*(rc, gti). 

5. Representation spaces 

It remains to rework and extend the classical relationship between the infinitesimal 

structure of representation spaces and group cohomology, cf. [27, 31, 321. Some care 

is necessary here since central connections which are not necessarily flat will 

into play later. 

Let 

come 

3 = (x1 )...) x,;ri )...) I;n) 

be a presentation of a finitely presented group x, and write F for the free 

(5.1) 

group 
on xi ,...,&l, so that 7c = F/N, where N refers to the normal closure of rl,. . . ,r,,,. 

Recall that, given an element w E F, over any ground ring R, the right Fox derivative 

aw/axj E RF with respect to the variable Xi, 1 < j I n, is given by the equation 

l-w=e(l-xj)&~IF. 
j=l J 

Here as usual IK = ker(e : RK --+ R) refers to the augmentation ideal of a group K. 
The usual description of a principal bundle with structure group acting on the right 
forces us to use here right Fox derivatives which are less common than left Fox 

derivatives. The Fox calculus, applies to the presentation 9, yields the sequence 

- $ aF 
R(Y) : RF - ZW[xl,. . .,x,1 d RF[q,. . . , r,,J (5.2) 

involving the free right W-modules having rl, . . . , r, and xi,. . . ,x, as bases, respec- 

tively; further, the operators 8$’ are given by certain explicit formulas; we reproduce 

them only for the case m = 1, which is our primary case of interest, and we write r 
instead of rl: 

q=[l-xi ,..., l-x,J:RF[xl,..., x,]+RF, 
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where t refers to the transpose of a vector. Modulo N, (5.2) yields the beginning R(P) 

of a free resolution of the ground ring R, viewed as a trivial Rrc-module, in the category 

of right Rrt-modules; the distinction between R(P) and R@) will be important in [12]. 

Given a right RF-module U, with structure map x from F to Aut(U), application 

of the fnnctor Homm(--, U) to (5.2) yields the sequence Homm(Rp), U) which, in 

view of the obvious identifications Horn&R&@), U) = U, Homw(R@), U) = U”, 

Homm(R@), U) = U”, looks like 

- a0 s’ 
Hom,&R(P), U) : U -L U” -2 Urn. (5.3) 

Here the operators 6, depend on the RF-module structure on U while the modules 

Urn, U”, U depend only on the presentation whence the notation. When x factors 

through a right Rn-module structure on U, (5.3) is a cochain complex (C*(P, U), S,* ) 
computing low-dimensional cohomology groups of rc with coefficients in U. Further, 

the subgroup of 1-cocycles Z”(P, U) = ker(bk) then depends only on n, g, and x, and 

not on a choice of presentation (5.1), and we shall therefore write Z1(rc, U) instead of 

Z’(9, U). 

Henceforth, we take R = I%, the reals, and U = g, the Lie algebra of G, viewed 

as a right G-module in the usual way. The assignment to (x(x1), , . . , &)) of x E 

Hom(F, G) identifies Hom(F, G) with G”, and that of the m-tuple 

to x E Hom(F, G) yields a smooth map @ from Hom(F, G) to GM. Moreover, for every 

x E Hom(F, G), we denote by ox the smooth map from G to Hom(F, G) which assigns 

x-lxx E Hom(F, G) to x E G. For later reference we reproduce the tangent behavior 

of these maps: 

Let x be a homomorphism from F to G; we write gX for the Lie algebra g, viewed 

as a right F-module via x and the adjoint representation. The homomorphism x be- 

ing viewed as the point y = (~1,. . . , yn) = (x(x1), . . . , x(xn)) of G”, its operation of 

left translation L, from g” to T,Hom(F, G) amounts to L,, x .. . x L, from g” to 

T&G x ... x Ty,G. Accordingly, we write LQ(,) for the corresponding operation of left 

translation from gm to T&G* = T,,(,)G x . . x T,(,,G. The following is well known, 

cf. [8, 27, 31, 321. 

Proposition 5.4. The tangent maps TeoX and TX@ and the operations of left transla- 

tion make commutative the diagram: 

T.Wl -59 
T,G - T,Hom(F, G) - T 9(x) G” 

Id 
T 

4 T bl,,, T 9 8 ’ Sn 4 ’ !Jm 
where C$ and 8; refer to the corresponding operators in (5.3), for U = gx. 
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For a homomorphism x from F to G having the property that each x(q) lies in the 

centre of G, the Lie algebra g inherits a structure of a right rc-module which we still 

denote by gX. 

Corollary 5.5. At a homomorphism x from F to G having the property that each 

x(rj) lies in the centre of G, left translation Lx from C’(B,g,) = g” to T,Hom(F,G) 

identifies the subspace Z’(qg,) of 1-cocycles with the kernel of the tangent map 

TX@ from T,Hom(F,G) to T@(,) G” and, moreover, the subspace B’(n,gr) of l-co- 

boundaries with the tangent space Tx(Gx) s T,Hom(F, G) to the G-orbit GX of x in 

Hom(F, G). 

Proposition 5.6. For every x E Hom(F,G) having the property that each ~(5) lies 
in the centre of G, for each x E G, the vector space automorphism Ad(x) of g is an 

isomorphism of right [Wn-modules from gx to gxx and hence induces an isomorphism 

Adb(x) from H’(rc,g,) onto H’(rc,g,..). 

Proof. This is left to the reader. 0 

We now have the machinery in place to relate the derivative of the Wilson loop 

mapping (2.6) with twisted 1-cochains and integration. We suppose that (5.1) is the 

presentation 9’ of the fundamental group n = nl(M, Q) having generators and relations 

represented by the smooth closed curves WI,. . . , w,,, cf. Sections 2 and 4 above, and 

attaching maps of the 2-cells of the cell decomposition of M, respectively. 

Let A be a central connection on 4, let 4 = p(A) : F + G and, as before, write gb 

for the Lie algebra g, with right n-module structure induced by 4. Notice the cellular 

1-cochains Ci!,,(M, g#) coincide with the 1-cochains C’(Y, g&) with reference to 9, 

cf. (5.3). 

Theorem 5.7. The dzfterential dp(A) : Ted -+ T+Hom(F, G) of the Wilson loop 
mapping p from d(r) to Hom(F, G) amounts to the composite of the twisted inte- 

gration mapping from TA&‘(~) = @(Mad(t)) to C’(Y,g+) with left translation L+ 

from C’(b, g#) = g” to T4Hom(F, G). 

Proof. In view of what was said about the map from fi to P in the proof of 

Proposition 4.1 and, furthermore, in view of the description (4.4) of the twisted inte- 

gration mapping, the statement follows at once from Theorem 2.7 and the fact that the 

cellular 1-cochains CE,,,(M,g$) coincide with the 1-cochains C’(Y,g+). 0 

6. Reduction of the smooth structures to the local models 

We return to the situation of the Introduction. For intelligibility we assemble at first 

a number of facts established in our papers [lo, 11, 141. 
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The Lie group G is now assumed compact, and its Lie algebra g is assumed endowed 

with an invariant inner product, referred to henceforth as an orthogonal structure. The 

orthogonal structure on g combined with the usual wedge product of forms A and 

integration induces a non-degenerate bilinear pairing (., .) between s2*(C, ad(r)) and 

52*-*(,X, ad(<)) given by (i, A) = J, i A 1. In particular, this furnishes a weakly sym- 

plectic structure CJ on sZ’(.C, ad( 5)) and hence one on d(t), cf. [4; 11, (1.1 )]. Further- 

more, the space Q*(C,ad(r)) of 2-forms being identified with the dual of fiO(,E,ad(t)) 

via (., .), the assignment to a connection A of its curvature KA yields a momentum 

mapping J from d(t) to Q*(X,ad(t)), for the action of the group 9(t) of gauge 

transformations on d(t), cf. [4]. 

Let A be a central Yang-Mills connection, fixed until further notice. Its operator 

dA : fi*(C,ad(l)) + Q*+‘(E,ad([)) f o covariant derivative is a differential, Hence, the 

cohomology Hz = H,*(_X, ad(t)) is defined. The Lie bracket on g induces a graded 

Lie algebra structure [., .]A on HA* and the orthogonal structure on g together with (., .) 

a non-degenerate graded bilinear pairing (., .)A between Hi and H;-*. In particular, 

the latter identifies Hz with the dual of the Lie algebra Hi = ZA of the stabilizer 

Z, C 9( 5) of A, and the constituent of (. , .)A in degree 1 is a symplectic structure aA 

on Hi. Moreover, the assignment to yl E Hl of @A(V) = $[n, q]~ yields a momentum 

mapping 0~ from Hi to Hi for the ZA-action on HA, cf. [l 1, (1.2.5)], in fact, the 

unique one with @A(O) = 0. Write HA for its reduced space. By [ll, (2.32)], the 

reduced space HA is a local model for N(l) near [A] in the sense that the data induce 

a homeomorphism of a neighborhood of [0] E HA onto a neighborhood of [A] in N( <). 

Our aim is to show that HA is a local model near [A] for all the structure of interest 

to us. To this end we observe first that HA inherits an obvious smooth structure which 

we explain under more general circumstances: 

Let M be a (finite-dimensional) symplectic manifold, with a hamiltonian action of a 

compact Lie group K and momentum mapping p from A4 to k*, and let V = p-‘(O) 

denote its zero locus, so that the reduced space looks like Mred = V/K. With respect to 

the decomposition into connected components of orbit types, the algebra of Whitney 

smooth functions 

C”(V) = C”(M)/Z~, (6.1.1) 

where IV refers to the ideal of functions that vanish on V, endows V with a smooth 

structure; likewise, the algebra 

(6.1.2) 

yields a smooth structure on the reduced space in an obvious fashion, where C-(IV)~ 

refers to the subalgebra of K-invariant functions. By construction, C?(Mred) is an 

algebra of continues functions on &&de In particular, this construction, applied to M = 

Hi, p = @A, and K = Z,, yields the smooth space (HA,P’(HA)). We mention in 

passing that it inherits a structure of stratified symplectic space [30]. Our present aim 

is to show that the latter is a local model for (N(t), P’(N(5))) near [A] EN(~). 
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Let (X, Coo(X)) be a smooth space, and let Y be an open subset of X. In order to 

avoid to have to talk about sheaves of germs of smooth functions, we define a notion 

of induced smooth structure on Y in the following way: We shall say that a continuous 

function f on Y is smooth if every point y of Y has an open neighborhood U so that 

the restriction of f to U coincides with the restriction to U of a smooth function on 

X, that is, a member of C”(X). These smooth functions on Y constitute an algebra 

Coo(Y) of continuous functions on Y which we refer to as its induced smooth structure. 

Notice the restriction map from C”(X) to Coo(Y) is not in general smjective. When 

X is a smooth manifold, with its standard smooth structure, and Y an open subset of 

X, the algebra CO”(Y) is that of smooth functions on Y in the ordinary sense. 

Theorem 6.2. Near [A] E N(t), the smooth space (HA,Coo(HA)) is a local model 

for (N(t), C”(N(5))). More precisely, the choice of A (in its class [A]) induces a 

difiomorphism of an open neighborhood & of [0] E HA onto an open neighborhood 

u, ofMl~N(5), h w ere WA and U, are endowed with the induced smooth structures 

C’“( WA) and C”( UA), respectively. 

To spell out the representation space version of Theorem 6.2, let 4 = p(A) : r --) G. 

Every $ ~Horn;(T, G) is manifestly of this form and, given such a $, a central Yang- 

Mills connection on 5 which is mapped to $ under p is unique up to based gauge 

transformations; see [lo]. The same kind of structure as that denoted above by (. , .)A, 

@A, and [. , .]A, is available on H$ = H*(rc, g4) and the twisted integration mapping 

from Hi to Hf identifies the respective structures. In particular, the Lie bracket on g 

induces a graded Lie algebra structure [. , .]b on H$. Further, the orthogonal structure on 

g induces a graded non-degenerate bilinear pairing on H$ which in degree 1 amounts 

to a symplectic structure cr$ on Hi, and the assignment to ~IEH$ of O$(yl) = i[q, ~14 

2 yields a momentum mapping 04 from Hk to H4, for the action of the stabilizer Z+ C G 

of 4 E Homg(T, G) on H$; notice that the sutjection (1.1) passes to an isomorphism 

from 2, to Z$ identifying the stabilizers. Moreover, the construction (6.1.2), applied 

to A4 = H$, ,U = 04, and K = Z+, yields the smooth space (H4,P’(H+)). It also 

inherits a structure of stratified symplectic space. 

Theorem 6.3. Near [4] E Rep&T, G), the smooth space (Hb,P’(H,+,)) is a local 

model for the smooth space (Rep((T, G), P’(Rep&T, G))). More precisely, the choice 
of 4 (in its cZass [4]) induces a difSeomorphism of an open neighborhood W$ of 

[0] E H$ onto an open neighborhood Ub of [4] E Rep&T, G), where W, and U, are 
endowed with the induced smooth structures P( W+) and Coo( U+), respectively. 

Addendum. Under the circumstances of Theorems 6.2 and 6.3, for suitable choices of 
the data, twisted integration identijies the ZocaZ models. More precisely, for a suitable 
choice of the data, the twisted integration mapping IntA from Hz to H$ identijes 
the symplectic structures aA on Hi and a4 on Hi, the stabilizers ZA and Z+, and 
momentum mappings @A and Od, and hence the stratijed symplectic spaces HA and 
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H4. Consequently, the twisted integration mapping and the Wilson loop mapping 

from N(t) to Rep&T,G) yield a commutative diagram 

WA - VA 

Pb 

of dtjj-eomorphisms between smooth spaces, the four spaces being endowed with the 
smooth structures mentioned earlier. Here Int AA denotes the map induced by twisted 

integration and pb 1 the restriction of the Wilson loop mapping to UA, and the un- 

labelled horizontal arrows are the maps coming into play in Theorems 6.2 and 6.3. 

The proofs of Theorems 6.2 and 6.3 require some preparation. Near A, the pre-image 

&A = J-‘(X~(C,ad(~))) of the space A?j(&ad(<)) of harmonic 2-forms is a smooth 

ZA-invariant submanifold of &d(t), cf. [l 11, and the operator d,.j gives rise to the exact 

sequence 

0 -+ TA&A + TA&(<) A &(C,ad(r)) ---t H;(C,ad(t)) -+ 0 (6.4) 

of real vector spaces whence, in particular, TA&A = Zj(C, ad( 5)) the corresponding 

space of 1-cocycles; here the tangent space TASK is identified with @(&ad(t)) 

as usual. Let &@A be a smooth finite-dimensional ZA-invariant submanifold of &A 

containing A, of the kind coming into play in the proofs of [ll, (2.32)] and [14, 

(1.2)]; in particular, TAA’A = XA1(C, ad( r)), the subspace of harmonic l-forms in 

@(C, ad(l)); in Proposition 6.11 below we shall pick AA suitably. We remind the 

reader that A’(<) C d(5) denotes the subspace of central Yang-Mills connections. It 

is clear that the assignment to a pair (?,A) in 9( <) x J$‘(<) of y(A) induces an injective 

B( <)-invariant immersion 

identifying 3(r) XZ, &A with a smooth s(t)-invariant codimension 0 submanifold of 

&A containing a %( r)-invariant neighborhood of A in M(4). In particular, the deriva- 

tive of this immersion at A amounts to the inclusion of Zj(C, ad(r)) into @(C, ad(r)). 

By [ll, (2.18)], the 2-form 0 on d(r) passes to a symplectic structure WA on 

the smooth manifold &A, and J induces a momentum mapping tiA from JltA to 

Hi(z, ad(r)) for the ZA-action, with 8(A) = 0; here H:(C, ad(r)) is identified with the 

dual z; of the Lie algebra zA = H:(z, ad(t)) as explained above; see (2.21) in [ 1 l] 

for details. We now consider the Marsden-Weinstein reduced space fi = ti;‘(0)/ZA. 

It is obvious that (6.5) induces an injection 

-ty ---) N(r) (6.6) 

of % into N(5) identifying -M/A with an open neighborhood uA of [A] in N(r), and 

in this way (6.6) furnishes a model of a neighborhood of [A] in N(r). Likewise, the 
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composite of (6.6) with the Wilson loop mapping Pb from N(5) onto Rep&I’,G) is 

an injection 

fl ---f Rep&r, G) (6.7) 

of “%$ into Rep&T, G) identifying ?& with an open neighborhood U$ of [4] in 

Rep,&T,G) whence (6.7) furnishes a model of a neighborhood of [e!~] in Repy(T,G). 

With respect to the decompositions into cormected components of orbit types, the em- 

beddings (6.6) and (6.7) are decomposition preserving. The construction (6.1.2) applied 

to M = %, p = r9,~, and K = ZA, yields a smooth structure C”(s) on $&, and the 

embeddings (6.6) and (6.7) are smooth since they preserve the decompositions into 

orbit types. Let Coo and C”(Q) be the induced smooth structures on VA and U,, 

respectively; it is obvious that (6.6) and (6.7) induce smooth maps 

(K, CO”(%) -+ (ti,CYUA)) (6.8) 

and 

(N, CYK)) -+ (Q, C”(Q)). (6.9) 

Moreover, the Wilson loop mapping from N(r) to Rep&T, G) passes to a smooth map 

(U4, CYUA)) -+ (%CYU,)) (6.10) 

in such a way that (6.9) is the composite of (6.8) and (6.10). Since each of 

(6.8)-(6.10) are homeomorphisms between the underlying spaces, the induced maps 

C”( U,) + Coo(s), etc. between the algebras of smooth functions are injective. We 

now show that they are surjective, for a suitable choice of the data. This will almost 

establish the statements of Theorems 6.2 and 6.3, except that % comes into play rather 

than an open neighborhood WA of [0] E HA. We proceed as follows: 

The composite 

g(l) XZ, =‘-%A ---t HOW’, G). (6.11.1) 

of (6.5) with the Wilson loop mapping from d( 0 to Hom(F, G) is B(S)-invariant, with 

respect to the $( [)-action on Hom(F, G) induced by (1.1) and, furthermore, factors 

through the obvious surjection 

y(g) xz, -‘@A + G Xz, -MA (6.11.2) 

and hence passes to a smooth G-invariant map 

G xz,, &%$ -+ Hom(F, G). (6.11.3) 

Proposition 6.11. For a suitable choice of A%$, the map (6.11.3) is a smooth injec- 
tive G-invariant immersion identzjjying G xza &A with a smooth G-submanifold of 
Hom(F, G) containing a G-invariant neighborhood of 4 in Homg(T, G). 

To prepare for the proof, we recall that the tangent space TAA!A equals the space 

Xi (C, ad( 5)) of harmonic 1 -forms and the tangent space Tc~,A)( g( 5) XZ, A&) equals 
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the space Zi(z, ad([)) of 1-cocycles; the latter, in turn, decomposes into the direct 

sum of Bi(C,ad(t)) and XA’(E,ad(5)). At the point (e,A), the tangent space of G xza 

y%e, equals likewise the direct sum of B’(rr, g$) and &’ (,E, ad(<)), and the smooth 

map (6.11.2) has tangent map 

&&ad(5)) EB &(&ad(<)) --- Untr”‘d) B’(n, g4) @ Xi(C, ad(t)), (6.11.4) 

where IntAl refers to the restriction of the twisted integration mapping IntA from 

Q*(,X:,ad(t)) to C*(P,g+), cf. (4.4), to the 1-coboundaries. However, the restriction of 

the twisted integration mapping to the subspace of 1-cocycles Zj(C, ad( 5)) amounts to 

a surjection of Zj(C, ad(<)) onto Z’(n, g4), as inspection of the commutative diagram 

O-Ho ---+Q”--+Z; A ---+Hf,---0 

I I I I 
O----+HO -Co 4 

-Z’ -H’ ----+O 
f$ ti 

with the obvious unlabelled arrows reveals, where we have written HA* = H,*(C, ad(l)), 

0’ = Q’(C,ad(t)), Zj = Zi(C,ad(<)), Hz = H*(rc,g+), Co = C’(P,g,), Zk = 

Z’(X, g$) for short. The diagram has exact rows; its outermost columns are isomor- 

phisms; and the arrow from 0’ to Co is manifestly surjective. This implies that (6.11.4) 

is surjective. In fact, write .X*(71, g$) for the isomorphic image in Z*(n, g$) of the sub- 

space of harmonic forms XA*(C, ad( 5)) in Q*(C, ad(t)) under the twisted integration 

mapping IntA so that the canonical epimorphism from Z*(rr, g+ ) onto H*( n, g$) passes 

to an isomorphism from X*(n,g$) onto H*(rc,g#). The direct sum of B’(rc,g$) and 

X’(rc, g+) equals the space Z’(rc, g#) of 1-cocycles, and the surjection of Zl(C,ad(<)) 

onto Z’(n,g$) factors through the induced isomorphism (Id,IntA) from B’(n,g$) @ 

X’i(C,ad(O) onto B’(n, g+,)@ X’(rc, g+), whence (6.11.4) is surjective. Consequently, 

(6.11.2) a submersion near the point (e,A). 

Proof of Proposition 6.11. The tangent map of (6.11.3) at the point (e,A) is the 

composite of: 

(i) the isomorphism (Id,IntA) from B’(n,g$) $ 9&‘(&ad(5)) onto B’(rc,g+) $ 

Z’(F g+), 
(ii) the inclusion of B’(rc, g+) EB X’(rc, g$) = Z’(n, g+) into C’(P, gb) and, finally, 

(iii) left translation Lb from C’(B, g$) to T&Hom(F, G). 

In fact, in view of Theorem 5.7 the derivative of (6.11 .l ) at A amounts to the 

twisted integration mapping IntA from &?‘(E, ad(l)) to C’(P, gd), restricted to the 

tangent space TAJYZA = Zj(C,ad(t)) C @(&ad(S)), combined with left translation L4 

from C’(9, gb) to T+Hom(F, G). However, it is manifest that this tangent map factors 

through the map from Zi(C, ad(r)) onto Z’(rc, g+) = B’(z, gb) @ %“(n, g4) induced 
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by the twisted integration mapping and hence through (6.11.4). Hence the tangent map 

of (6.11.3) at the point (e,A) decomposes into the three pieces (i)-(iii) and is therefore 

injective since so is the inclusion of Z’(rc,g+) into C’(P,g$). This implies that the 

smooth map (6.11.3) is an immersion near (e, A); hence, for a suitable choice of _N,,, 

it is injective. 

Finally, since S(5) xz, ,%e,, viewed as a smooth g(t)-invariant codimension 0 sub- 

manifold of &A via (6.5), contains a g(t)-invariant neighborhood of A in N(t), and, 

furthermore, since (6.11.2) is a submersion, the image of G xzl &‘A under (6.11.3) 

contains a G-invariant neighborhood of 4 in Homc(T, G) as asserted. 0 

Henceforth, we assume that the smooth manifold &‘A has been chosen in such a way 

that (6.11.3) is injective. This enables us to relate the smooth structures of N(c) near 

[A] and of Rep&T, G) near [4] with that of % near A by means of (6.11.3). 

To verify surjectivity of the induced map from C”(U+) to P’(nlyA), let h : t& --) R 

be a function in P(K). Then there is a unique continuous function f on U+ whose 

composite with (6.9) equals h. We must show that f lies in Cm(U,). In order to see 

this, let H be a smooth ZA-invariant function on JV?‘A representing h. Abusing notation, 

we denote its canonical extension to a G-invariant function on G xz, J%?~ by H as 

well. The space G XZ~ AA being identified with a smooth G-invariant submanifold 

of Hom(F,G) via (6.11.3) we must show that H extends locally to a G-invariant 

function on Hom(F, G). However, given a homomorphism $ from r to G in the 

image of (6.11.3), there is an open G-invariant neighborhood U of I/I in the image 

of (6.11.3) and a smooth G-invariant function g on Hom(F, G) whose restriction to U 

coincides with the restriction of H to U. By construction, g represents a function in 

COg(Rep&T,G)) and hence one in C”(U$) which, on a neighborhood of [$I in U,, 

coincides with f. Since $ is arbitrary, this shows that f is smooth as asserted, that is, 

lies in P’(U+). Consequently (6.9) and hence (6.8) and (6.10), are diffeomorphisms 

of smooth spaces. 

To complete the proofs of Theorems 6.2 and 6.3 we recall that, by [ll, (2.31)], 

a suitable Kuranishi map furnishes a ZA-equivariant symplectomorphism @A from Ja;. 

onto a ZA-invariant ball BA in HA(z,ad(t)) about the origin, cf. [ll, (2.29)], and this 

map preserves the momentum mappings @A and t9A. Marsden-Weinstein reduction ap- 

plied to BA and O,, restricted to BA, then yields the open subspace WA of HA we are 

looking for, and the Kuranishi map induces a homeomorphism of a neighborhood of [A] 

in N( 5) onto WA. See [ 11, (2.32)] for details. Moreover, the construction (6.1.2) applied 

to M = BA, p = @A, restricted to BA, and K = ZA, yields a smooth structure Coo( & ) in 

such a way that @A induces a diffeomorphism from (fl, Coo(%)) onto (WA, C”( WA)). 

Hence the data induce a diffeomorphism of (WA,C~(WA)) onto (UA,P(UA)). This 

completes the proof of Theorem 6.2. The same construction applies to the image B4 

of BA in H$ under the twisted integration mapping IntA from HA to H$, the momen- 

tum mapping 04, and the stabilizer Z$ of 4; it yields the open subspace W+ of H4 

we are looking for and a smooth structure C”( W,), together with a diffeomorphism 

of (W+,CO”( W@)) onto (U$,Cm(U4)). This completes the proof of Theorem 6.3. 
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Moreover, the constructions have been carried out in such a way that the statement of 
the Addendum is immediate. q 

We now proceed towards the proof of Theorem 3.8. Henceforth, A will denote 

a central Yang-Mills connection which is no longer fixed. At first, we must show that 
the restriction of a smooth function on N(t) and likewise on Rep&T, G) to a stratum 
is a smooth function on the stratum in the ordinary sense. In view of Theorems 6.2 and 
6.3, it suffices to prove that, under the circumstances of the construction (6.1.2), the re- 
striction of a smooth function in COO(&&d) to a piece of Mre,j is smooth in the ordinary 
sense. However, this amounts to the fact that the restriction to a smooth submanifold 
of a smooth function defined on a smooth manifold is smooth on the submanifold. 

As immediate consequence of the Addendum to Theorem 6.3 we see that the Wilson 
loop mapping from N(t) to Rep&f, G) is locally a diffeomorphism. To see that this 
is globally so, we establish the existence of suitable partitions of unity. We begin with 
the following, the proof of which is routine and therefore left to the reader. 

Lemma 6.12. Let W be a jnite-dimensional complex representation of a compact Lie 
group K, and let B be an open K-invariant neighborhood of the origin. Then there 

are open K-invariant neighborhoods Q and R of the origin with Q C R and R S B, 
together with a smooth K-invariant real-valued function H on B with 

H]Q = 1, H]B\R = 0. 

Under the circumstances of Lemma 6.12, suppose the K-representation is unitary, let 
p denote its unique momentum mapping from W to k* having the value zero at the 
origin, let wred be its reduced space, and let C”( w,,) be the corresponding smooth 
structure (6.1.2). Here is an immediate consequence of Lemma 6.12. 

Corollary 6.13. Let P be an open neighborhood in Wred of the class [0] of the origin, 
with its induced smooth structure C-(P). Then there aRe open neighborhoods Q and R 
in Wred of [0] with Q g R and R c P, together with a smooth function h E C-(P), with 

h@ = 1, hJP\R = 0. 

Corollary 6.14. Given an arbitrary open neighborhood UI,, of the point [A] of N(t), 

there are open neighborhoods Q[AI and R[AI of [A] in N(t), with & C RCA] and 
RI,, C U[A,, together with a smooth function h[Al on N(r) with 

- 
hdQ,~, = 1, &I IN(t)\R[zq = 0. 

Likewise, given an arbitrary open neighborhood U[+l of the point [c$] of Rep&T, G), 
there are open neighborhoods Qc+l and R[+] of [4] in Rep&T, G), with ar,, C R~41 
and EI~J C Ur$,, together with a smooth function h[+l on Repy(T, G) with 

&I lRepy(~, G)\&I = 0. 
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When [4] = p~,[Al and U[,] =pb(U[A]), under the Wilson loop mapping pb from N(4) 

to Rep&T,G), things may be arranged in such a way that pb identijies Q[A~, &A], 

and hIAl with, respectively, Q[$J, R[~I, and h[bl. 

Proof. This is a consequence of Theorems 6.2 and 6.3, its Addendum, and Corol- 

lary 6.13. 0 

For each point [A] of N(c), pick an injection of WA into N(5) of the kind coming 

into play in Theorem 6.2 above, and write UA C N(t) for the image of WA in N(l), 

so that UA is an open neighborhood of [A] in N(c), as in Theorem 6.2; we then write 

4 = p(A) and U$ C Rep&T, G) for the image of U, under the Wilson loop mapping, 

as in Theorem 6.3. Here is our third main result. 

Theorem 6.15. There is a jinite open cover of N(r) by open sets of the kind UA 

together with a smooth partition of unity subordinate to this cover. Moreover, there 

is a finite open cover of Rep&T, G) by open sets of the kind U$ together with a 
smooth partition of unity subordinate to this cover in such a way that the Wilson 

loop mapping identijies the covers and partitions of unity. 

Proof. By Corollary 6.14, for every central Yang-Mills connection A, there are open 

neighborhoods Q[AI and R[A 1 of [A] in N( C;), with QrAl 2 RLAI and &Al & U[A], together 

with a smooth function h[A] on N(l) with 

- 
htA]lQ~Al = ‘9 h[.qIN(t)\R[A] = 0. 

The subsets Q[AI constitute an open cover of N(r). Since N(t) is compact, there is a 

finite subcover { Qt , . . . , Qm}. Each Ql lies in some Un; the corresponding family { Ul} 

is the open cover of N(5) we are aiming at. Moreover, for each I, there is a function 

ha E COO(N(r)) so that hn has the constant value 1 on Qn and is zero outside an open 

neighborhood of Qi, in UA_. Let h = C hn; then h E tF’(N(t)) and h[A] 2 1, whatever 

[A] E N(t). The family {en}, where en = hn/h, then furnishes the desired partition of 

unity. 

The same kind of construction yields the asserted open cover and smooth partition of 

unity for Rep&T, G), and the Wilson loop mapping identifies the covers and partitions 

of unity. 0 

We can now complete the proof of Theorem 3.8: Let {ht,. . . ,h,} be the parti- 

tion of unity subordinate to the open cover {U,, . . . , U,,,} in Theorem 6.15. Given 

f E C”(N(t)), let fl = fhn; this is a smooth function, that is, fA E CF(N([)). 
By construction, each fA has a pre-image in Co3(Repy(T, G)). Consequently, f has a 

pre-image in C”O(Rep,(r,G)) whence the map from Cm(Repy(Z”,G)) to COO(N(5)) 

induced by the Wilson loop mapping is surjective. This completes the proof of 

Theorem 3.8. 
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7. Cohomology, Zariski tangent spaces, and local semi-algebraicity 

In this section we study the infinitesimal structure of our spaces of interest. 

Given a smooth space (X, C”(X)), for each point x EX, the ideal m, of x consists 

of all functions in C”(X) vanishing at x; as usual, the space of dz#erentials ax(X) at 

x is the vector space sl,(X) = m,/mj, and the Zariski tangent space T,X is the dual 

space T,X = 4(X)* = (q/m~ )*. When X is a smooth manifold near a point n in 

the usual sense, with standard smooth structure near n, the Zariski tangent space boils 

down to the usual smooth tangent space T,X whence there is no risk of confusion in 

notation. Here is another well-known description of the Zariski tangent space: Let XEX 

and view R as a C”(X)-module, written iwx, by means of the evaluation mapping from 

P(X) to [w which assigns to a function f its value f(x) at VEX; now a derivation 

at XEX is a linear map d from Coo(X) to [w satisfying the usual Leibniz rule 

d(fh) = (df )h(x) + f(x) dh. 

We denote the real vector space of all derivations of P’(X) in [w, by Der(C”(X), Iw,). 

For x E X, the assignment to 4 E T,X of the derivation d$ at x given by d+(f) = 

qh(f - fx) identifies T,X with Der(Coo(X), 02,); here f E C”(X) and fx denotes the 

function having constant value f(x). 

Given smooth spaces (X, C”(X)), (Y, P(Y)), and a smooth map 4 from X to Y, 

the derivative at a point x EX is the dual dq& : T,X --f T#xY of the linear map from 

m~(,,/m&,) to m,/tn~ induced by 4. 

Let (X, C”(X)) be a smooth space, and let U be an open subset of X. We shall 

say that a smooth function h on X is a bump function with support in U if there are 

open subsets Q and R of X with Q C R and i? c U, so that 

h@ = 1, hJX\R = 0. 

Given a point x of X, we shall say that X has smooth bump functions arbitrarily close 

to x if for every open neighborhood U of x in X there is a smooth bump function h 
having the value 1 near x, with support in U. From Corollary 6.14 above we deduce 

at once the following. 

Proposition 7.1. The spaces N(r) and Rep&f, G) have smooth bump functions arbi- 
trarily close to every point. 

Let (X, C”(X)) be a smooth space having smooth bump functions arbitrarily close 

to every point. We recall the following well-known fact and reproduce a proof for 

completeness. 

Proposition 7.2. For every connected open subset Y, with induced smooth structure 
P’(Y), the inclusion j from Y to X induces an isomorphism of Zariski tangent 
spaces for every x E Y. 
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Proof. If f is a smooth function which is constant on a neighborhood U of x E X, 

then df is zero for every derivation d from C”(X) to [w,. In fact, the differential of 

a constant function (on X) is zero, and hence we may assume that f has the value 

zero on U. Given a bump function h with support in U, we then have 

0 = d(fh) = dfh(x) + f(x)dh = df 

since h(x) = 1 and f(x) = 0. 

In particular, for every derivation d from C?(X) to [w,, the value dh is zero for 

every bump function h near x EX. Hence, given an arbitrary function f E C”(X) and 

a bump function h near x, for every derivation d from C”(X) to II%,, we have 

d(fh) = (df)h(x) + f(x) dh = df. 

Let x E Y, and let h be bump function on X with h(y) = 1 near x having support 

in Y. Given a derivation d from Coo(X) to lK!, and f E Coo(Y), the function fh 
is defined on X, and df = d(fh) extends d to a derivation from C”(Y) to [w,. 

This shows the induced map from Der(C-(Y), [w,) to Der(O(X), [w,) is surjective. 

Moreover, if a derivation d from C”(Y) to iw, goes to zero in Der(C-(X), E-8,), it 

must itself be zero since df = d( fh) for every f and every bump function h. 0 

In view of Proposition 7.2, there is no need for us to talk about sheaves of germs 

of smooth functions in order to define Zariski tangent spaces, etc. In fact, in view of 

Theorem 6.2, 6.3 and Proposition 7.1, 7.2 entails at once the following: 

Theorem 7.3. For every central Yang-Mills connection A, the inclusion of an open 

subspace of the kind VA into N(t) induces an isomorphism of Zariski tangent spaces 
from T[AIUA onto Tl~lN(t). Likewise, for every 4 E Homg(F, G), the inclusion of an 
open subspace of the kind U+ into Rep&T, G) induces an isomorphism of Zariski 

tangent spaces from Tlbj U$ onto Tl4jRep,&r, G). Consequently, a choice of repre- 
sentative A (in its class [A]) induces an isomorphism of Zariski tangent spaces from 
TI~JHA onto Tl~lN(l), and a choice of representative Q, (in its class [$I]) induces an 
isomorphism of Zariski tangent spaces from TlolH$ onto TlblRep&T, G). 

This reduces the study of the Zariski tangent spaces to our local models, to which we 

now turn. Let W be a finite-dimensional unitary representation of a compact Lie group 

K, and let 0 denote its unique momentum mapping from W to k* having the value zero 

at the origin; further, let V = O-‘(O), with smooth structure C”(V) given by (61.1) 

and WEd = V/K, its reduced space, with smooth structure C”( W,d) given by (6.1.2). 

By Corollary 6.13, ( Wred, Coo( W,,)) has smooth bump functions arbitrarily close to ev- 

ery point. Hence, by Proposition 7.1, the inclusion of an arbitrary open connected subset 

of W&d containing the class [0] of the origin, with its induced smooth structure, induces 

an isomorphism of Zariski tangent spaces at [O]. The Zariski tangent space T9V of V 
at the origin equals the linear span Vect( V) of V in W, and projection from V to W&d 

induces a linear map A from To V to T[ol I#&. To deduce information about the Zariski 
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tangent space Tlcl Red, we denote the space of K-invariants by WK and its counter part, 

that is the space arising from dividing out the K-action, by WK. The kernel .JK( W) 

of the canonical projection from W to WK is the linear span of the elements xw - W, 

x E K, w E W. A little thought reveals that the orthogonal complement of WK in 

W equals the subspace JK( W), that is, as a K-representation, W = WK 83 JK( W). 

Moreover, the zero locus V contains the subspace WK of K-invariants, and the pro- 

jection from V to Ked, restricted to WK, is a homeomorphism identifying the latter 

with the (smooth) stratum S in which the class [0] of the origin lies. The (smooth) 

tangent space Tl$ of S at [0] is thus just a copy of WK, and the inclusion of S 

into Ked induces an injection of Tle$ ZZ WK into T[alB&. Furthermore, with respect 

to the decomposition into connected components of orbit types, the algebra of invari- 

ants (C”( W))K endows the orbit space W/K with a smooth structure C”( W/K), and 

the inclusion of #&d into W/K is smooth. Since the induced map from C”( W/K) to 

C”( Wred) is surjective, the derivative Tie] Wred -+ Tlcl( W/K) of this inclusion is in fact 

injective. 

Lemma 7.4. Suppose the zero locus V of 0 spans W so that the Zariski tangent 
space ToV equals W whence the linear map 1 then goes from W to Tlo] W&. Then 

1, has kernel JK( W) and image equal to the (smooth) tangent space ToS, viewed as 

a subspace of Tlo] Red. In particular, 1 is injective and hence an isomorphism if and 

only if W is a trivial K-representation. 

In the language of [2, p. 711, the condition says that, V being viewed as a constraint 
set, the “spanning condition” is satisfied at 0 E V. 

Proof. View W as a real vector space, consider the algebra R[W] of real polynomials 

on W, and pick a finite set of homogeneous generators (ICI,. . . , Q) of the subalgebra 

RIWIK of K-invariant polynomials. Then the Hilbert map IC from W to lRk which 

assigns X(W) = (~1 (w), . . , Q(W)) to a vector w E W descends to an injective map z 

from W/K to [Wk. In view of a result of [28], with reference to the smooth structure 

P’( W/K), the map Ic is proper, that is, the induced map from C-(Rk) to Co3( W/K) 
is surjective, and hence the derivative of i7 at the orbit [0] = 0 . K is injective; fur- 

ther, when the number k is minimal, by a result of [22], this derivative is even an 

isomorphism from Tlol( W/K) onto [w k. Thus, for k minimal, the canonical map from 

W to Tle]( W/K) comes down to the derivative dlc(0) : W + Rk of the Hilbert map 

at the origin, and the latter decomposes into the linear map 1 from W to TlolW& and 

the injection from Ttal eed into Tlol( W/K) which embeds Ttol w& into a k-dimensional 

vector space. However, W = WK@J~( W), and drc(0) vanishes on JK( W) and identifies 

WK with a subspace of Rk, in fact, with what corresponds to the tangent space ToS. 

In particular, 1 to be injective means that WK equals W, that is to say, that K acts 

trivially on W. 0 

Next we recall the following well-known fact. 
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Proposition 7.5. As a smooth space, B&d is semi-algebraic. 

We reproduce a proof, for reference in the next section. 

Proof. After a choice of invariant polynomials (ICI,. . . , Q) has been made, by the 

Tarski-Seidenberg theorem, the resulting injective map i? from W/K to iWk realizes 

W/K as a semi-algebraic subset of [Wk, in fact, of the real affine categorical quotient 

W//K, that is, of the real affine variety determined by a finite set of relations for the 

algebra of invariants RIWIK. The composite of ir with the canonical injection of Wred 

into W/K embeds Wred into [Wk. To see this embedding is semi-algebraic, write IV for 

the ideal of V in [w[ W] and consider the real affine coordinate ring A[V] = [w[ W]/Zv 

of V. Since K is compact, the canonical map from [w[ WIK/ZF to the K-invariants A[ VIK 

is an isomorphism. Let 41,. . . , cje be a finite set of generators of IF; when we write 

them out in the generators (~1 , . . . , r’&), we obtain a polynomial map Q, from [Wk to [We 

so that &:ed amounts to the intersection of W/K with the real affine set P’(O) whence 

I’& is semi-algebraic in [Wk. q 

Remark. We have seen above that the inclusion of W& into W/K induces an embedding 

of the Zariski tangent space TlojW,d into the Zariski tangent space Tlal( W/K). The 

above embedding of I& into T~ol( W/K) passes to an embedding into T[al?I&. In 

fact, the embedding of W/K into its Zariski tangent space is induced by the canonical 

embedding of W into its tangent space TOW which assigns to a vector w E W its 

directional derivative at the origin on smooth functions on W. It is obvious that this 

association passes to one which assigns to a vector w E V an element in the Zariski 

tangent space TOP’, viewed as a linear subspace of TOW, and hence, by K-invariance, 

to an embedding of WE4 into its Zariski tangent space T[alFI&d as a semi-algebraic set. 

An example will be examined in the next section. 

We now apply the above to moduli spaces. For a central Yang-Mills connection A, 
we shall denote by V, the zero locus of the quadratic mapping 0, from Hi to Hz, 

cf. Section 6, and likewise, for 4 in Homy(T, G), we shall denote by I” the zero locus 

of the quadratic mapping 04 from H$ to H$,. 

Lemma 7.6. For every central Yang-Mills connection A, the zero locus V, spans 

HA(Xad(S)). Likewise,for every 4 in Homg(T, G), the zero locus V$ spans H1(rc, g+). 

The proof of this lemma requires some preparation. We shall denote by N(t)- the 

subspace of central Yang-Mills connections A having the property that the Lie bracket 

[. , .]A is zero on Hi. Recall that a description of the space do for a central Yang- 

Mills connection A has been reproduced in Section 6 above. It is proved in [ll] (2.8) 

that, near a central Yang-Mills connection A, the space N(t) coincides with &A(C) and 

hence is smooth near A, with tangent space TAJV( <) equal to the space Zi(C, ad( 5)) 

of 1-cocycles if and only if A lies in J”(t)-. Thus, the subspace N(t)- is a smooth 

submanifold of d(t), and from the exactness of (6.4) we deduce that, for every point 
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A of dCr(<)-, the operator of covariant derivative dA gives rise to the exact sequence 

0 + TAM(~) + T&(t) 2 fi*(&ad(t)) + Hi(C,ad(t)) --f 0 (7.7) 

of real vector spaces. In fact, the points of JV(~)- are exactly the weakly regular points 

[ 1, p. 3001 for the momentum mapping J from d(t) to Q*(C, ad(r)), cf. Section 6. 

Denote by _VQ(<) the subspace of ./lr(t) which consists of central Yang-Mills 

connections A having the property that 2~ acts trivially on Hi(& ad(t)), so that the 

top stratum Pp( 5) equals Jlrtor( l)/B( g), see our paper [14]. By [14, (1.5)], there is 

a certain subgroup Z “P of G unique up to conjugacy, such that under (1.1) the image , 

of the stabilizer Z, of every central Yang-Mills connection A in JITtoP(S) is conjugate 

to ZQ’. Since 0~ is a momentum mapping for every central Yang-Mills connection A, 
_M”‘P( 4) is a subspace of A+-( 0, in fact, a smooth codimension zero submanifold since 

for every A E Nt”P(5) the tangent map of the inclusion Xt”p(5) C .A+(<) amounts to 

the identity mapping of Za(C, ad(t)). 

In what follows, by the dimension dim 6 of VA we mean the dimension of its 

nonsingular part V,- C &. 

Proof of Lemma 7.6. Since the top stratum N’“P(5) is dense in N(r), cf. [14, (1.4)], 

arbitrarily close to [A] there is a point [A] in the top stratum, and we may assume 

that the group Ztop is the stabilizer Zz of 2 Then a neighborhood of the point x of 

& corresponding to 2 is the total space of a ZA-fiber bundle, having as base space a 

neighborhood of the class [x] in &/ZA and as fiber the homogeneous space ZJZ’“P. 

Consequently, 

dim V, = dim TX V, = dim Ntop( 0 + dim ZA - dim ZtoP 

= dim Hi + dim ZA - dim Ztop. 

However, for every central Yang-Mills connection A, the twisted integration mapping 

yields an isomorphism from Hr(C, ad([)) onto H*(n, g, A). Now an Euler characteris- 

tic argument in the chain complex calculating the corresponding group cohomologies 

establishes equality between the two alternating sums dim Hi - dim Hi + dim Hz and 

dim Ht-- dim Hi+ dim Hi. Since dim Hi = dim Hi = dim ZA and dim Hi = dim Hf = 

dimZQ’ 3 we conclude 

dim H!- - 2 dim ZtOP = dim Hl - 2 dim Z,, 
A 

(7.6.1) 

and thence 

dim 6 = dim Hf, - dim ZA + dim Ztop. (7.6.2) 

Next we assert that, at the image x of [T] in VA C Hf4, the derivative d@(x) : Hi + Hi 

of @A has rank 

raItk(d@(x)) = dim Hi - dimZtop = dimZ~ - dimZtoP. (7.6.3) 
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Now, at a point AE A&, the smooth submanifold &A of d(5) has tangent space 

Ti& = (4; d~+E~~(&ad(4))} C @(&ad(O). 

In other words, the right-hand unlabelled arrow being the inclusion, the square 

Ql 

I I 
T,-&(r) A Q%adtO) 

is a pull back diagram. By construction, 

(7.6.4) 

l(t) = {aE&; Ka = Kt}; here Kg refers 
to the element of X:(C, ad([)) determined by the topology of [, see [ 11, Section 21. 

Since (7.6.4) is a pull back diagram, by standard principles, at a point a of A’-([) 

the sequence (7.7) induces an exact sequence of real vector spaces 

0 -+ T~JV(~) + T&z& 2 Y&&ad(t)) -+ H$(C,ad(t)). (7.6.5) 

Notice at present we cannot assert that the last arrow in (7.6.5) is surjective. 

Next we recall that, for 2 in Jr/--(r) and close to A, the smooth submanifold &!A of 

&A, cf. [ 11, (2.16)] and Section 6 above, has tangent space T~A$A equal to TA .&‘A n 

ker(d,*); hence such a point a gives rise to the exact sequence 

0 -+ (TAN(<) n ker(dJ)) --+ T~J& -+ da(TAJ&) -+ 0 

which, cf. [lo, Section 21, with & = X(r) n A$$, looks like 

0 + Ta& + TJM~ -+ d,-(Ta&) + 0. (7.6.6) 

We note th?, near A, 4 also equals the intersection X(t) II (A + ker(d,* )). 

Let now A be a point close to A representing a point of N”‘p; then A lies in particular 

in A’-({), and near 2, the restriction to & of the projection map from J”(t) onto 

N(5) is a fiber bundle map onto its image, having fiber the homogeneous space ZA/Z~ 

Consequently, in view of (7.6.1), 

dim& = dimN(t) + dimZA - dimZ;;- 

= dim Hi + dim ZA - dim Z; 

=dimHi +dimZz-dimZA. 

However, dim &A = dim Hfi. Consequently, 

dim d,-(T,-&A ) = dim Hi - dim _A$ 

= dim ZA - dim Z;;- 

= dim H; - dim H$, 
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whence the exact sequence (7.6.5) furnishes the exact sequence 

(7.6.7) 

of finite-dimensional real vector spaces; notice its exactness at TzA! is implied by 

that of (7.6.6). By construction, the Kuranishi map identifies (7.6.7) with the sequence 

0 + T,G + T,H,!,(X,ad(l)) doA(X) - H; (&ad(t)) + Hi(C,ad(t)) + 0 (7.6.8) 

which is therefore exact. In particular, the point x E I$ is weakly regular for OA, and 

hence dOA has rank asserted in (7.6.3). 

Finally, we show that the latter implies that the real linear span Vect( &) of 6 in 

H,!,(C, ad(r)) equals the whole space Hi(,Y, ad( 5)). In fact, the cone 6 is obviously 

stable under 2.. Moreover, in view of [ 11, (2.27)], for every n E XA1(& ad(l)), the 

value [Q ~1 E zA2(C, ad(Q) is zero if and only if [*q, *q] = 0; here * refers to the 

corresponding duality operator, cf. [l 1, (1.1.5)]. Consequently, the cone V, is stable 

under the duality operator *. However, this dl-ality operator induces the complex 

structure on Hi(C,ad(t)). Hence the real linear span Vect( &) of VA in H,!,(C,ad(r)) 

equals its complex linear span in Hi(C, ad(t)); the complex vector space Vect( V,) thus 

inherits a structure of a unitary ZA-representation, and as a unitary &-representation, 

the space Hi(C,ad(r)) decomposes into the direct sum of Vect(J$) and its orthogo- 

nal complement Vect( VA)‘. Moreover, the restrictions 0: and 0: of 0~ to Vect( 6) 

and Vect( VA)‘, respectively, are the unique momentum mappings for these unitary 

ZA-representations having the value zero at the origin. By construction, the cone V, 

lies in the summand Vect( V,), whence the zero locus (O:)-‘(O) & Vect(&)’ consists 

merely of the origin. Hence, whatever weakly regular point x of V,, the rank of the 

derivative dOA coincides with the rank of the restriction d@;(x) to T,Vect(G) = 

Vect( VA). Consequently, dim 5 = dim Vect( VA) - dim& + dimPop. However, in view 

of (7.6.2), this can only happen if dimVect( 6) = dimHi(z,ad([)), whence Vect( 6) 

= H,!, (C, ad(t)) as asserted. 0 

Remark 7.8. Let K be a compact Lie group, with Lie algebra k, let W be an 

n-dimensional unitary representation of K, and let p be the unique momentum mapping 

from W to k* having the value zero at the origin. Its derivative at the origin is zero, 

the kernel of dp(O) in fact equals the whole space W, and the Zariski tangent space 

T&-‘(O)) at the origin of the zero locus p-‘(O) is obviously a subspace of the kernel 

of dp(O). However, in general, the Zariski tangent space does not coincide with the 

kernel of dp(O). To see this, suppose that the irreducible representations in W are all 

non-trivial, that K is a subgroup of the unitary group U(n), and that K contains the 

central circle subgroup S’ of U(n). Since the momentum mapping for the S’-action 

on C” is given by the assignment to z E C” of (]zj1’, the zero level set cl-‘(O) will 

then consist of the origin only, the Zariski tangent space of which is of course trivial. 

Thus, Lemma 7.6 is non-trivial. 
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The decompositions of N(5) and Rep&T,G) into connected components of orbit 
types have been shown to be a stratification in [14]. If [A] lies in the stratum N(K), 
the inclusion of N(K) into N(t) induces an injection TIA~(N(K)) ---) T&v(<) of Zariski 
tangent spaces, and TrAl(Nc~)) will in this way be viewed as a linear subspace of 
Tr~jN(t); this is e.g. a consequence of Theorem 6.2 combined with Lemma 7.4. Notice 
that T~,$V~K) amounts to the usual smooth tangent space of the smooth manifold N(K). 

It is clear that the same kind of remarks can be made for an arbitrary point [4] of 
Rept(r,G) and the stratum Repg(T,G)(K) in which it lies. A point in the top stratum 
N”+‘(~) will be referred to as a non-singular point of N(r), cf. [14]. Accordingly, the 
representation space Rep&T, G) has a non-singular part or top stratum Repy(r, G), 

and a point in RepF(T, G) will be said to be a non-singular point of Rep&T, G). We 
now collect a number of consequences of the above results. 

7.9. Let [A] be a point of N(5). In view of Theorem 6.2 and Lemma 7.6, a choice 
of representative A in its class [A] determines a linear map 2~ from H,!,(C,ad(t)) to 
Tl#(5). In fact, this map is the composite of the linear map 3, from Hi(C, ad(t)) 
to Tlej WA, cf. Lemma 7.4, with the derivative of the injection of WA into N(r) given 
in Theorem 6.2, where WA refers to an open neighborhood of the class of zero in 
HA of the kind coming into play in Theorem 6.2. By construction, & depends on the 
Kuranishi map; however the latter, in turn, depends merely on the data coming into 
play in the definition of N(5). It is in this sense that a choice of representative A of 
[A] in fact determines &. The map 1~ has the following properties: 

(1) It is independent of the choice of A in the sense that, for every gauge transfor- 
mation y E FJ( 0, the composite 

H,!d-K ad(O) JQ H:(A)(&ad(t)) - T[AIN(~) 

of the induced linear isomorphism ye with &(A) coincides with AA. 
(2) Its kernel equals the subspace J&Hi) of Hfi = Hi(&ad(t)), where K = Z,, the 

stabilizer of A. 
(3) Its image equals the (smooth) tangent space T~A~(N(KJ), viewed as a subspace 

of T&v(l) in a sense explained above, where N(K) denotes the stratum in which 
[A] lies. 

(4) It is an isomorphism if and only if [A] is a non-singular point of N(c). 
These follow at once from Lemma 7.4 except statement (1) the proof of which we 

leave to the reader. 

7.10. Let [c$] be a point of Rep&T,G). In view of Theorem 6.3 and Lemma 7.6, a 
choice of representative 4 in Horn&T, G) in its class [4] determines a linear map 14 
from H1(rc, g+) to TtbjRep&T, G). In fact, this map is the composite of the linear map 
1 from H1(rc, g@) to Tcsj W,, cf. Lemma 7.4, with the derivative of the injection of W$ 
into Repg(T, G) given in Theorem 6.3, where W$ refers to an open neighborhood of 
the class of zero in H+ of the kind coming into play in Theorem 6.3. By construction, 
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the injection of Wd into Rep&f, G) depends a priori on the Kuranishi map and in 

particular on the choice of Riemannian metric on JC. However, IId does not depend on 

this choice. In fact, by Theorem 5.7, the derivative of the Wilson loop mapping p from 

d(4) to Hom(F, G) at a central Yang-Mills connection A, restricted to the subspace 

Zl(C, ad( 0) of I-cocycles in sZ’(C, ad(t)) = TA&( r), amounts to the composite 

Zl<& ad(O) - INA’ z$c, g+) 3 T+ Horn,,, r, G) 

of the restriction IntA] of the twisted integration mapping with left translation L+ from 

Z’(n,g$) to T++ Homg(T,G), whatever Riemannian metric on C; here C/J = p(A) E 

Homt(T, G). Since every C$ E Homg(T, G) arises in this way, for every such 4, the 

diagram 

-en, 9@) 
4 

-+ T4 Homg(T, G) 
I 

I I 
H1h a#,> d, T$ Rep&f, G) 

is commutative, the unlabelled vertical maps being the obvious ones. Hence, a choice 

of representative 4 in its class [$] indeed determines a linear map 14 as asserted 

which does not depend on a choice of Riemannian metric on E. The map Q, has the 

following properties: 

(1) It is independent of the choice of C#J in the sense that, for every x E G, the 

composite 

H1h g4> 
A&(x) 

- H’(nn, 9x$) 2 T[b] Rep&~, G) 

of the induced linear isomorphism Adb(x) with & coincides with il4. 

(2) Its kernel equals the subspace J~(H’(rc,g#)) of H’(rc,g+), where K = Z+, the 

stabilizer of 4. 

(3) Its image equals the (smooth) tangent space T,l(Rep&r,G)(K)), viewed as a 

subspace of Tt@l Rep&T, G) in a sense explained above, where Rep&T, G)(K) denotes 

the stratum in which [4] lies. 

(4) It is an isomorphism if and only if [c$] is a non-singular point of Rep&T, G). 

These follow again at once from Lemma 7.4 except statement (1) the proof of which 

is formally the same as that of (7.9(l)). 

The statements of (7.9) and (7.10) 

Yang-Mills connection A, the diagram 

are related by the fact that, for every central 

(7.11) 

H ’ ( 7L $(A 1) IptA) TbWl Rep&r, G 1 

is commutative. Thus at a non-singular point [A] of N(t), the derivative of the Wilson 

loop mapping comes down to the twisted integration mapping Int.4 from Hi(& ad(t)) 

to H’(nn, 9p(A)). 
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Remark 7.12. At a singular point [4] of Rep&T,G), the Zariski tangent space 

T[+)Rep&T,G) with respect to the smooth structure CW(Reps(r,G)) does not boil 

down to H’(n,g$), cf. what is said on p. 205 of [8]. An example where this 

phenomenon really occurs will be given in the next section. 

Here is an immediate consequence of Theorems 6.2 and 6.3 and Proposition 7.5. 

Theorem 7.13. As smooth spaces, N(5) and its difiomorphe Rep,(T,G) are locall) 
semi-algebraic. 

Next we spell out our jifth main result. For every r#~ E Homt(T, G), the kernel of the 

derivative dr+ from T+ Hom(F, G) to T exp(xtjG, with reference to the word map r from 

Hom(F, G) to G, yields a notion of not necessarily reduced Zariski tangent space, and 

it is clear that the Zariski tangent space T$ Homg(T, G) with reference to the smooth 

structure Cm(Homg(f,G)) (introduced in Section 3) is a subspace thereof; however, 

a priori the two spaces should not be confused. 

Theorem 7.14. For every point 4 E Homg(T, G), the Zariski tangent space with ref- 
erence to CM (Homg(T,G)) coincides with the kernel of the derivative dr+. 

Thus our reduced Zariski tangent space coincides with the other notion of Zariski 

tangent space. However, we do not know whether the ideal in r?(Hom(F,G)) corre- 

sponding to the word map r coincides with its real radical. 

Proof. Let A be a central Yang-Mills connection so that p(A) = 4. The smooth G- 

invariant immersion (6.11.3) identifies the subspace G xzA 1$-l(0) with a G-invariant 

neighborhood of 4 in Homy(T, G); here I$ refers to the momentum mapping coming 

into play in Section 6. However the Kuranishi map @A, cf. [l 1, (2.29)] and what is said 

in Section 6, identifies the inclusion of G xzA 4-‘(O) into G xzA J&A with the inclusion 

of G xz, & into G xzA Hi, where 6 c Hi refers to the cone O;‘(O); see Section 6 

for any unexplained notation. Now the tangent space Tt,o] (G xz, Hf4) decomposes 

into a direct sum of B’(n,g+) and Hi, that is, it amounts to the space Z’(rr,g+) of 

1-cocycles, and in suitable coordinates near the point [e,O], the space G xza % boils 

down to the zero locus of the composition of the projection from Z’(rc, g4) to H1(rc, g4) 

with the momentum mapping 0~ from Hf, to HA. 2 In view of Lemma 7.6, this implies 

that the Zariski tangent space of G x z, G at the point [e,O] equals the tangent space 

T,,,sl (G xz, Hi) whence the assertion. 0 

8. An example 

Consider the moduli space N of flat SU(2)-connections for a surface C of genus 2. 

This example is already sufficiently general to visualize the global picture which 

emerges. As a space, N is just complex projective 3-space, by a result of Narasimhan 
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and Ramanan [25]. However, we shall see that, as a smooth space, with smooth struc- 

ture (3.6), it looks rather different. 

Write G = SU(2), and let 2 = {fl} denote the centre of G and T = S’ c G 

the standard circle subgroup inside G; it is a maximal torus. The decomposition of 

N according to orbit types of flat connections has the three pieces No, N(r), and Nz, 

where the subscript refers to the conjugacy class of stabilizer; we recall that NG consists 

of 16 isolated points and that N(r) is connected. 

In view of what is said in Section 6 of our paper [ 161 near a point of the middle 

stratum N(r), as a smooth space, N looks like a product of a standard Iw4 with a copy 

of the half cone C = {(u, v,r); u* + t’* = r*; Y 2 0}, with smooth structure induced by 

the embedding of C in 3-space with coordinates (u, u,~). In fact, the latter arises as 

the reduced space for the diagonal SO(2, [W)-action on W = [w2 x [w2 with its obvious 

symplectic structure, in the following way: Let K = SO(2, Iw), and write elements of 

W in the form w = (q, p) E R* x R2. The algebra lhJ[I@ of invariants is generated by 

qq, pp, qp, [qpl, and the momentum mapping ,u is given by p(q,p) = (qpl. However, 

p generates the ideal IV of polynomials in [w[W] vanishing on the zero locus V = 

p-‘(O); since p is K-invariant it also generates the ideal 1; of K-invariant polynomials 

vanishing on I’. Thus the coordinate ring A[ V] has four generators while the subalgebra 

of K-invariants AIYIK is generated by u = qq - pp, u = 2qp, Y = qq +pp, subject to 

the relation r2 = u2 + v2. The real affine categorical quotient W//K is the double cone 

given by this equation while the reduced space I?& amounts to the positive cone C, 

with the cone point included. Moreover, it is manifest that the Zariski tangent space 

TsC at the cone point 0 has dimension 3.2” fact, the invariants u, v,r induce a map 

1 from 1w4 to IQ3 passing through a map A from rW4/K to [w3; now 1 has derivative 

zero at the origin while the derivative of 2 induces an isomorphism from Tloj onto [w3. 

Hence for a point [A] of the middle stratum N(r), the Zariski tangent space TWAIN has 

dimension 4 + 3 = 7. On the other hand, the dimension of Hi(C,ad(t)) equals 8, 

and the linear map & from Hj(C, ad(t)) to TtAIN has rank four since the derivative 

of A at the origin has rank zero. Thus the Zariski tangent space T[AIN can in no way 

be identified with the cohomology group HA(C, ad(t)), cf. Remark 7.12. 

Likewise, in view of what is said in Section 7 of our paper [ 161, near any of the 16 

points of NG, as a smooth space, N looks like the reduced space for the momentum 

mapping p from W = (R3)4 to the dual of so(3, rW), for the diagonal SO(3, IW)-action on 

W with its obvious symplectic structure, the SO(3, IW)-action on Iw3 being the obvious 

one. With the notation (41, pl,q2, ~2) E (R3)4 for the elements of W, the momentum 

mapping p is given by the assignment to (41, pl, q2, ~2) of q1 A p1 +q2 A ~2. Moreover, 

by invariant theory, cf. [33, 151, the ten distinct invariants 

qiqj, qiPj, PiPj, 1 5 Li 5 2, (8.1) 

among the scalar products, together with the four determinants 

(8.2) 
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constitute a complete set of invariants for the SO(3, R)-action on W. However, for 

(ql,P1,q2,P2)E v=K’(O), that is, when 41 A PI +q2 A p2=0, any three of (ql,pt, 
q2, ~2) are linearly dependent, that is, (41, pl,q2, ~2) lie in a plane in R3, whence the 

four determinants (8.2) vanish on V, and the algebra of invariants A[V]so(3*“) in the 

coordinate ring A[V] = IR[W]/IV is in fact generated by the ten scalar products; these 

induce the quadratic SO( 3, R)-invariant map 

r 4141 q1q2 4lPl 91P2 1 

2 : w + S2W4h A(q1,p1,q2,p2) = 

I 

y; 
q2q2 cl2Pl cI2P2 

Plq2 PlPl PlP2 

I 

(8.3) 

P2@ p2q2 P2Pl P2 P2 

into the lo-dimensional real vector space S2(R4) of symmetric 4 by 4 matrices which, 

in turn, passes to an embedding 

z : f&d -+ S2(R4) (8.4) 

of II& into S2(R4) as a real semi-algebraic set S; more details about this semi-algebraic 

realization will be given below. We assert at first that the Zariski tangent space TaS 

at the origin equals the whole ambient space, that is, has dimension 10. In fact, S is 

a cone since for (q1,p1,q2,p2) E V and t E R, 

Xt(q1, p1,q2> P2)l = t2X[q1, p1,q2, p21 E s. 

Hence for x E S, the half line {tx; t 2 0) lies in S. Let v be an arbitrary vector in lR3 

of length one. Then the vectors 

all lie in V, and inspection shows that their images in S under 1 are linearly independent 

in the ambient vector space S2(R4) and hence constitute a basis. In fact, 

etc. Consequently, the linear span of the cone S equals the whole ambient space S2(R4), 

and hence the latter coincides with the Zariski tangent space TcS at the origin as 

asserted. In particular, the minimal number of generators of the algebra A[V]so(3*R) is 

ten, and this is also the minimal number of generators of C”(W&) since if fewer 

generators did suffice the dimension of the Zariski tangent space would be smaller. 

These observations translate to the moduli space N in the following way: Let [A] 

be a point in No. Then the Zariski tangent space T[AIN has dimension 10 and hence 

the minimal number of generators of CO”(N) near [A] or rather that of its germ at 

[A] is 10. Moreover, a closer look reveals that the Zariski tangent space T[AIN equals 
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that of T[A$V(~), with reference to the induced smooth structure C?(N(r)). In fact, in 

the language of constrained systems, N(r) corresponds to reduced states where each 

of the two particles individually has angular momentum zero, cf. what is said in our 

paper [ 161, and hence the images of the ten vectors (8.5) under Iz already lie in the 

part of S which corresponds to N(r). In particular, the minimal number of generators 

of the induced smooth structure CO”(N(r)) near [A] or rather that of its germ at [A] 

is still 10. Finally, the linear map & from Hi(C, ad(<)) to T,,@ is zero since the 

derivative of A at the origin is zero. Thus, the Zariski tangent space T&V can in no 

way be identified with the cohomology group Hj(C, ad(t)), cf. Remark 7.12. It seems 

also worthwhile pointing out that, cf. [16], as a complex variety, near a point [A] in 

No, the stratum N(r) looks like the quadric Y2 = XZ in complex 3-space and hence at 

a point [A] in No the complex Zariski tangent space of N(r) has dimension 3. Thus, we 

see once more that, as a smooth space, the moduli space N of flat SU(2)-connections 

for a surface C of genus 2 looks rather different from complex projective 3-space with 

its standard smooth structure. 

More information about the geometry of N near a point [A] in No can be obtained 

in the following way: The cone V in W may be defined as the zero locus of the single 

homogeneous real quartic function Y on W given by the formula 

wql,Pl,q2,P2) = (41 A PI +42 A P2)(c?l A Pl +q2 A P2). 

However, this function looks like 

‘y(q1, p1,q2, P2) = 
9141 41Pl +2 q1q2 

PI41 I 1 

qlP2 

PlPl Plq2 Pl P2 1 1 

+ q2q2 cl2P2 

p2q2 P2P2 

and hence passes to a quadratic function 9 on S2(lR4). Next we observe that the reduced 

space W&d with respect to the SO(3, IW)-action coincides with the reduced space with 

respect to the action of the larger group 0(3, [w) since the four determinants (8.2) which 

distinguish between the two reduced spaces vanish on V; this is a special phenomenon 

due to the fact that we are considering angular momentum of two particles in [w3. 

Now Wed appears as the zero locus of the single function $ on W/0(3, rW>. However, 

by invariant theory, the ten distinct inner products (8.1) constitute a complete set of 

invariants for the 0(3, [W)-action on W subject to the single defining relation 

4191 

WI1 

PI41 

P2ql 

Consequently, 

q1q2 41Pl qlP2 ( 

a92 q2Pl QP2 

Plcl2 PIP1 PlP2 = 
0. (8.6) 

P242 P2Pl P2P2 

the affine categorical quotient W//0(3, [w) amounts to the space of sin- 

gular symmetric 4 x 4 matrices, and W/0(3, iw) is realized as its semi-algebraic subset 

which consists of non-negative semi-definite matrices. Thus, the reduced space W&d 

and hence the space N near a point [A] in No appear as the zero locus of the single 

function $ on the subspace of singular non-negative semi-definite matrices. The deter- 

minant and Ic/ clearly yield two SO(3, IW)-invariant polynomials vanishing on V, that 
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is, elements of the ideal Zv s”(3@) but these two will not generate lF(3,R). In fact, we 

can at once write down the following six 0(3, R)-invariant polynomials which vanish 

on V and are quadratic in the generators (8.1) of A[ W]“(3*R): 

(41 * q2h-k (41 A PlhA (41 A P2h (q2 A Plb4 (q2 A P2h (Pl A P2)P 

(8.7) 

More explicitly, (a,b) denoting any of the six couples (q1,q2), etc., we have 

Moreover, from the six relations 

ujl VA ujl vjz uji VA 

l”j~uj~uj~Ilvj~vj2vj31 = uj:vjl uj>vj* uj,vjj 

uj, vjl uj, vi2 uj, vjl 

among the SO(3, R)-invariants (8.1) and (8.2), cf. [33], where Iaj,uj2Uj31 and 

(Uj, VjzUjj 1 refer to any of the four determinants (8.2) we conclude that on V all 3 x 3 mi- 

nors of 3,(ql, pl, q2, ~2) vanish; these 3 x 3 minors yield six additional 0(3, R)-invariant 

polynomials vanishing_ on V, of degree three in the generators (8.1) of A[ W]“(3*“). In 

particular, the image A( I&) lies in the subspace of symmetric 4 x 4 matrices having 

rank at most 2. We conjecture that the six quadratic polynomials (8.7) and the six 

cubic ones arising from the 3 x 3 minors constitute a complete set of generators of the 
ideal zvo(3,1w) = 1~(3.‘w). 

The methods of Lerman et al. [20] yield a geometric description of I&d, viewed 

as a subspace of that of symmetric 4 x 4 matrices: Let J be the symplectic operator 

on R4: J2 = - 1, JtJ = Id, rr(v,w) = VJW. The assignment S H JS identifies S2(R4) 

with the Lie algebra sp(2, R), and a result in [20] implies that 1 identifies WA with 

the closure of the nilpotent orbit in sp(2, R) which corresponds to positive symmetric 

4 x 4 matrices of rank at most 2 having kernel a coisotropic subspace. The Lie algebra 

sp(2, R) has rank two - in fact it is the split real form of C2 which coincides with 

Bz, though - and its algebra of Sp(2, R)-invariants under the adjoint representation 

is a polynomial algebra, generated by the Killing form and the determinant. Hence, 

the nilvariety Nil(sp(2, R)) is of real dimension 8; it consists of singular matrices in 

sp(2, R) having vanishing Killing form, and its subspace Nil+(sp(2, R)) of non-negative 

semi-definite matrices is a union no U nl U n2 U n3 of four nilpotent adjoint orbits, nj 

being the subspace of non-negative semi-definite rank j matrices. The reduced space 

I&d now appears as the union no U nl U n2. It may be described as a zero locus in 

Nil+(sp(2, R)) in various ways, that is, 

- of the function $ or what corresponds to it, restricted to Nil+(sp(2, R)), 

- of the functions (8.7) or what corresponds to them, restricted to Nil+(sp(2, R)); in 

fact, the two functions (41 A p1)~ and (q2 A pz)~ already suffice; 

- of the six 3 x 3 minors, restricted to Nil+(sp(2, R)). 
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Somewhat amazingly, since, as a space, I+& is smooth in the ordinary sense, in fact 

a copy of real affine 6-dimensional space, the union no U nl U n2 is just a real affine 

6-dimensional space. 
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